Maple 2018. 2 Integration Test Results
on the problems in "5 Inverse trig functions/5.3 Inverse tangent"
Test results for the 48 problems in "5.3.2 (dx) ${ }^{\wedge} m\left(a+b \arctan \left(c x^{\wedge} n\right)\right)^{\wedge} p . t x t^{\prime \prime}$
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arctan (c x)}{x} \mathrm{~d} x
$$

Optimal(type 4, 27 leaves, 3 steps):

$$
a \ln (x)+\frac{\mathrm{I} b \text { polylog}(2,-\mathrm{I} c x)}{2}-\frac{\mathrm{I} b \operatorname{polylog}(2, \mathrm{I} c x)}{2}
$$

Result(type 4, 73 leaves):
$a \ln (c x)+b \ln (c x) \arctan (c x)+\frac{\mathrm{I} b \ln (c x) \ln (1+\mathrm{I} c x)}{2}-\frac{\mathrm{I} b \ln (c x) \ln (1-\mathrm{I} c x)}{2}+\frac{\mathrm{I} b \operatorname{dilog}(1+\mathrm{I} c x)}{2}-\frac{\mathrm{I} b \operatorname{dilog}(1-\mathrm{I} c x)}{2}$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int x^{2}(a+b \arctan (c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 120 leaves, 9 steps):

$$
\begin{aligned}
\frac{b^{2} x}{3 c^{2}} & -\frac{b^{2} \arctan (c x)}{3 c^{3}}-\frac{b x^{2}(a+b \arctan (c x))}{3 c}-\frac{\mathrm{I}(a+b \arctan (c x))^{2}}{3 c^{3}}+\frac{x^{3}(a+b \arctan (c x))^{2}}{3}-\frac{2 b(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}} \\
& -\frac{\mathrm{I} b^{2} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}
\end{aligned}
$$

Result(type 4, 297 leaves):

$$
\begin{aligned}
\frac{x^{3} a^{2}}{3} & +\frac{x^{3} b^{2} \arctan (c x)^{2}}{3}-\frac{b^{2} \arctan (c x) x^{2}}{3 c}+\frac{b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}+\frac{b^{2} x}{3 c^{2}}-\frac{b^{2} \arctan (c x)}{3 c^{3}}+\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{6 c^{3}}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2}}{12 c^{3}} \\
& -\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln \left(c^{2} x^{2}+1\right) \ln (c x-\mathrm{I})}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{6 c^{3}}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{6 c^{3}} \\
& +\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2}}{12 c^{3}}-\frac{\mathrm{I} b^{2} \ln \left(c^{2} x^{2}+1\right) \ln (c x+\mathrm{I})}{6 c^{3}}+\frac{2 x^{3} a b \arctan (c x)}{3}-\frac{x^{2} a b}{3 c}+\frac{a b \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 121 leaves, 6 steps):
$-2(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)-\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)+\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)$

$$
-\frac{b^{2} \text { polylog }\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2}+\frac{b^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2}
$$

Result(type 4, 1127 leaves):
$-\mathrm{I} a b \operatorname{dilog}(1-\mathrm{I} c x)+\mathrm{I} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)-2 \mathrm{I} b^{2} \arctan (c x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{\mathrm{I} b^{2} \pi \arctan (c x)^{2}}{2}$
$-2 \mathrm{I} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+2 a b \ln (c x) \arctan (c x)+\mathrm{I} a b \operatorname{dilog}(1+\mathrm{I} c x)+b^{2} \arctan (c x)^{2} \ln \left(1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)$
$+b^{2} \ln (c x) \arctan (c x)^{2}-b^{2} \arctan (c x)^{2} \ln \left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)+b^{2} \arctan (c x)^{2} \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\mathrm{I} a b \ln (c x) \ln (1+\mathrm{I} c x)-\mathrm{I} a b \ln (c x) \ln (1$
$-\mathrm{I} c x)-\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}$
$+\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}-\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}$
$+\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}$
$-\frac{\mathrm{I} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}$

$$
\begin{aligned}
& \left.\quad-\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2} \\
& -
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 112 leaves, 5 steps):
$\frac{\mathrm{I}(a+b \arctan (c x))^{3}}{c}+x(a+b \arctan (c x))^{3}+\frac{3 b(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c}+\frac{3 \mathrm{I} b^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c}$

$$
+\frac{3 b^{3} \text { polylog }\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c}
$$

Result(type 4, 269 leaves):

$$
\begin{aligned}
a^{3} x- & \frac{\mathrm{I} b^{3} \arctan (c x)^{3}}{c}+b^{3} \arctan (c x)^{3} x+\frac{3 b^{3} \arctan (c x)^{2} \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c}-\frac{3 \mathrm{I} b^{3} \arctan (c x) \operatorname{poly} \log \left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c} \\
& +\frac{3 b^{3} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2 c}-\frac{3 \operatorname{I\operatorname {arctan}(cx)^{2}ab^{2}}}{c}+3 \arctan (c x)^{2} x a b^{2}+\frac{6 \arctan (c x) \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right) a b^{2}}{c} \\
& -\frac{3 \operatorname{I~polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right) a b^{2}}{c}+3 a^{2} b \arctan (c x) x-\frac{3 a^{2} b \ln \left(c^{2} x^{2}+1\right)}{2 c}
\end{aligned}
$$

Problem 18: Unable to integrate problem.

$$
\int(d x)^{m}(a+b \arctan (c x)) \mathrm{d} x
$$

Optimal(type 5, 71 leaves, 2 steps):

$$
\frac{(d x)^{1+m}(a+b \arctan (c x))}{d(1+m)}-\frac{b c(d x)^{2+m} \text { hypergeom }\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],-c^{2} x^{2}\right)}{d^{2}(1+m)(2+m)}
$$

Result(type 8, 16 leaves):

$$
\int(d x)^{m}(a+b \arctan (c x)) \mathrm{d} x
$$

Problem 20: Result is not expressed in closed-form.

$$
\int \frac{a+b \arctan \left(c x^{2}\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 31 leaves, 4 steps):

$$
a \ln (x)+\frac{\mathrm{I} b \operatorname{poly} \log \left(2,-\mathrm{I} c x^{2}\right)}{4}-\frac{\mathrm{I} b \operatorname{poly} \log \left(2, \mathrm{I} c x^{2}\right)}{4}
$$

Result(type 7, 62 leaves):

$$
a \ln (x)+b \ln (x) \arctan \left(c x^{2}\right)-\frac{b\left(\sum_{R 1=R o o t O f\left(c^{2}\right.} Z^{4}+1\right)}{2 c}
$$

Problem 25: Unable to integrate problem.

$$
\int x^{2}\left(a+b \arctan \left(c x^{2}\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 1030 leaves, 86 steps):

$$
\begin{aligned}
& \frac{2 \mathrm{I} a b x^{3}}{9}+\frac{x^{3}\left(2 a+\mathrm{I} b \ln \left(1-\mathrm{I} c x^{2}\right)\right)^{2}}{12}-\frac{b^{2} x^{3} \ln \left(1-\mathrm{I} c x^{2}\right)}{9}-\frac{b^{2} x^{3} \ln \left(1+\mathrm{I} c x^{2}\right)^{2}}{12}-\frac{(-1)^{1 / 4} b \arctan \left((-1)^{3 / 4} x \sqrt{c}\right)\left(2 a+\mathrm{I} b \ln \left(1-\mathrm{I} c x^{2}\right)\right)}{3 c^{3 / 2}} \\
& +\frac{(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(1+\mathrm{I} c x^{2}\right)}{3 c^{3 / 2}}+\frac{(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(1+\mathrm{I} c x^{2}\right)}{3 c^{3 / 2}} \\
& -\frac{2(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{2}{1-(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}+\frac{2(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{2}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}} \\
& -\frac{(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{\sqrt{2}\left((-1)^{1 / 4}+x \sqrt{c}\right)}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}+\frac{2(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{2}{1-(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}} \\
& -\frac{2(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{2}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}+\frac{(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(-\frac{\sqrt{2}\left((-1)^{3 / 4}+x \sqrt{c}\right)}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{(1+\mathrm{I})\left(1+(-1)^{1 / 4} x \sqrt{c}\right)}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}} \\
& -\frac{(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(\frac{(1-\mathrm{I})\left(1+(-1)^{3 / 4} x \sqrt{c}\right)}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}-\frac{2 \mathrm{I} b^{2} x \ln \left(1-\mathrm{I} c x^{2}\right)}{3 c}-\frac{\mathrm{I} a b x^{3} \ln \left(1+\mathrm{I} c x^{2}\right)}{3}+\frac{2 \mathrm{I} b^{2} x \ln \left(1+\mathrm{I} c x^{2}\right)}{3 c} \\
& -\frac{2(-1)^{1 / 4} a b \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right)}{3 c^{3 / 2}}-\frac{(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right) \ln \left(1-\mathrm{I} c x^{2}\right)}{3 c^{3 / 2}} \\
& +\frac{(-1)^{3 / 4} b^{2} \text { polylog }\left(2,1-\frac{2}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}-\frac{(-1)^{3 / 4} b^{2} \operatorname{polylog}\left(2,1+\frac{\sqrt{2}\left((-1)^{3 / 4}+x \sqrt{c}\right)}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{6 c^{3 / 2}} \\
& -\frac{(-1)^{3 / 4} b^{2} \operatorname{polylog}\left(2,1-\frac{(1+\mathrm{I})\left(1+(-1)^{1 / 4} x \sqrt{c}\right)}{1+(-1)^{3 / 4} x \sqrt{c}}\right)}{6 c^{3 / 2}}-\frac{(-1)^{1 / 4} b^{2} \operatorname{polylog}\left(2,1+\frac{(-1+\mathrm{I})\left(1+(-1)^{3 / 4} x \sqrt{c}\right)}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{6 c^{3 / 2}} \\
& -\frac{\mathrm{I} b x^{3}\left(2 a+\mathrm{I} b \ln \left(1-\mathrm{I} c x^{2}\right)\right)}{9}+\frac{4(-1)^{3 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right)}{3 c^{3 / 2}}+\frac{(-1)^{1 / 4} b^{2} \arctan \left((-1)^{3 / 4} x \sqrt{c}\right)^{2}}{3 c^{3 / 2}} \\
& -\frac{4(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right)}{3 c^{3 / 2}}-\frac{(-1)^{3 / 4} b^{2} \operatorname{arctanh}\left((-1)^{3 / 4} x \sqrt{c}\right)^{2}}{3 c^{3 / 2}}+\frac{b^{2} x^{3} \ln \left(1-\mathrm{I} c x^{2}\right) \ln \left(1+\mathrm{I} c x^{2}\right)}{6} \\
& +\frac{(-1)^{1 / 4} b^{2} \operatorname{polylog}\left(2,1-\frac{2}{1-(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}+\frac{(-1)^{1 / 4} b^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}} \\
& -\frac{(-1)^{1 / 4} b^{2} \text { polylog }\left(2,1-\frac{\sqrt{2}\left((-1)^{1 / 4}+x \sqrt{c}\right)}{1+(-1)^{1 / 4} x \sqrt{c}}\right)}{6 c^{3 / 2}}+\frac{(-1)^{3 / 4} b^{2} \operatorname{polylog}\left(2,1-\frac{2}{1-(-1)^{3 / 4} x \sqrt{c}}\right)}{3 c^{3 / 2}}-\frac{4 a b x}{3 c}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int x^{2}\left(a+b \arctan \left(c x^{2}\right)\right)^{2} \mathrm{~d} x
$$

Problem 26: Unable to integrate problem.

$$
\int\left(a+b \arctan \left(c x^{2}\right)\right)^{3} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 69 steps):

Result(type 8, 14 leaves):

$$
\int\left(a+b \arctan \left(c x^{2}\right)\right)^{3} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{\left(a+b \arctan \left(c x^{2}\right)\right)^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 47 steps):
0
Result(type 8, 18 leaves):

$$
\int \frac{\left(a+b \arctan \left(c x^{2}\right)\right)^{3}}{x^{2}} \mathrm{~d} x
$$

Problem 32: Unable to integrate problem.

$$
\int x^{8}\left(a+b \arctan \left(c x^{3}\right)\right)^{2} d x
$$

Optimal(type 4, 136 leaves, 10 steps):

$$
\begin{aligned}
\frac{b^{2} x^{3}}{9 c^{2}} & -\frac{b^{2} \arctan \left(c x^{3}\right)}{9 c^{3}}-\frac{b x^{6}\left(a+b \arctan \left(c x^{3}\right)\right)}{9 c}-\frac{\mathrm{I}\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{9 c^{3}}+\frac{x^{9}\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{9}-\frac{2 b\left(a+b \arctan \left(c x^{3}\right)\right) \ln \left(\frac{2}{1+\mathrm{I} c x^{3}}\right)}{9 c^{3}} \\
& -\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x^{3}}\right)}{9 c^{3}}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int x^{8}\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 137 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{2\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x^{3}}\right)}{3}-\frac{\mathrm{I} b\left(a+b \arctan \left(c x^{3}\right)\right) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x^{3}}\right)}{3} \\
& \quad+\frac{\mathrm{I} b\left(a+b \arctan \left(c x^{3}\right)\right) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x^{3}}\right)}{3}-\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x^{3}}\right)}{6}+\frac{b^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x^{3}}\right)}{6}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{x} \mathrm{~d} x
$$

Problem 37: Unable to integrate problem.

$$
\int\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 69 steps):

$$
0
$$

Result(type 8, 14 leaves):

$$
\int\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{x^{6}} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 77 steps):

$$
0
$$

Result(type 8, 18 leaves):

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{2}}{x^{6}} \mathrm{~d} x
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(a+b \arctan \left(c x^{3}\right)\right)^{3} \mathrm{~d} x
$$

Optimal(type 4, 128 leaves, 6 steps):
$\frac{\mathrm{I}\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{3 c}+\frac{x^{3}\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{3}+\frac{b\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \ln \left(\frac{2}{1+\mathrm{I} c x^{3}}\right)}{c}+\frac{\mathrm{I} b^{2}\left(a+b \arctan \left(c x^{3}\right)\right) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x^{3}}\right)}{c}$

$$
+\frac{b^{3} \text { polylog }\left(3,1-\frac{2}{1+\mathrm{I} c x^{3}}\right)}{2 c}
$$

Result(type 4, 302 leaves):
$\frac{a^{3} x^{3}}{3}-\frac{\mathrm{I} b^{3} \arctan \left(c x^{3}\right)^{3}}{3 c}+\frac{b^{3} \arctan \left(c x^{3}\right)^{3} x^{3}}{3}+\frac{b^{3} \arctan \left(c x^{3}\right)^{2} \ln \left(1+\frac{\left(1+\mathrm{I} c x^{3}\right)^{2}}{c^{2} x^{6}+1}\right)}{c}-\frac{\mathrm{I} b^{3} \arctan \left(c x^{3}\right) \operatorname{polylog}\left(2,-\frac{\left(1+\mathrm{I} c x^{3}\right)^{2}}{c^{2} x^{6}+1}\right)}{c}$
$+\frac{b^{3} \operatorname{polylog}\left(3,-\frac{\left(1+\mathrm{I} c x^{3}\right)^{2}}{c^{2} x^{6}+1}\right)}{2 c}-\frac{\mathrm{I} \arctan \left(c x^{3}\right)^{2} a b^{2}}{c}+\arctan \left(c x^{3}\right)^{2} x^{3} a b^{2}+\frac{2 \arctan \left(c x^{3}\right) \ln \left(1+\frac{\left(1+\mathrm{I} c x^{3}\right)^{2}}{c^{2} x^{6}+1}\right) a b^{2}}{c}$
$-\frac{\mathrm{I} \text { polylog }\left(2,-\frac{\left(1+\mathrm{I} c x^{3}\right)^{2}}{c^{2} x^{6}+1}\right) a b^{2}}{c}+a^{2} b \arctan \left(c x^{3}\right) x^{3}-\frac{a^{2} b \ln \left(c^{2} x^{6}+1\right)}{2 c}$

Problem 40: Unable to integrate problem.

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 122 leaves, 6 steps):
$-\frac{\mathrm{I} c\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{3}-\frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{3 x^{3}}+b c\left(a+b \arctan \left(c x^{3}\right)\right)^{2} \ln \left(2-\frac{2}{1-\mathrm{I} c x^{3}}\right)-\mathrm{I} b^{2} c\left(a+b \arctan \left(c x^{3}\right)\right) \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} c x^{3}}\right)$

$$
+\frac{b^{3} c \operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I} c x^{3}}\right)}{2}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\left(a+b \arctan \left(c x^{3}\right)\right)^{3}}{x^{4}} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int(d x)^{m}\left(a+b \arctan \left(c x^{3}\right)\right) \mathrm{d} x
$$

Optimal(type 5, 73 leaves, 2 steps):

$$
\frac{(d x)^{1+m}\left(a+b \arctan \left(c x^{3}\right)\right)}{d(1+m)}-\frac{3 b c(d x)^{4+m} \text { hypergeom }\left(\left[1, \frac{2}{3}+\frac{m}{6}\right],\left[\frac{5}{3}+\frac{m}{6}\right],-c^{2} x^{6}\right)}{d^{4}(1+m)(4+m)}
$$

Result(type 8, 18 leaves):

$$
\int(d x)^{m}\left(a+b \arctan \left(c x^{3}\right)\right) \mathrm{d} x
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \arctan \left(\frac{c}{x}\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 79 leaves, 6 steps):

$$
\mathrm{I} c\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right)^{2}+x\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right)^{2}-2 b c\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right) \ln \left(\frac{2 c}{c+\mathrm{I} x}\right)+\mathrm{I} b^{2} c \operatorname{polylog}\left(2,1-\frac{2 c}{c+\mathrm{I} x}\right)
$$

Result(type 4, 356 leaves):

$$
x a^{2}+b^{2} x \arctan \left(\frac{c}{x}\right)^{2}+c b^{2} \arctan \left(\frac{c}{x}\right) \ln \left(1+\frac{c^{2}}{x^{2}}\right)-2 c b^{2} \arctan \left(\frac{c}{x}\right) \ln \left(\frac{c}{x}\right)+\frac{\mathrm{I} c b^{2} \ln \left(1+\frac{c^{2}}{x^{2}}\right) \ln \left(\frac{c}{x}-\mathrm{I}\right)}{2}-\mathrm{I} c b^{2} \operatorname{dilog}\left(1+\frac{\mathrm{I} c}{x}\right)
$$

$$
+\frac{\mathrm{I} c b^{2} \ln \left(\frac{c}{x}+\mathrm{I}\right) \ln \left(\frac{\mathrm{I}}{2}\left(\frac{c}{x}-\mathrm{I}\right)\right)}{2}-\frac{\mathrm{I} c b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}\left(\frac{c}{x}+\mathrm{I}\right)\right)}{2}-\frac{\mathrm{I} c b^{2} \ln \left(\frac{c}{x}-\mathrm{I}\right) \ln \left(-\frac{\mathrm{I}}{2}\left(\frac{c}{x}+\mathrm{I}\right)\right)}{2}-\mathrm{I} c b^{2} \ln \left(\frac{c}{x}\right) \ln \left(1+\frac{\mathrm{I} c}{x}\right)
$$

$$
+\mathrm{I} c b^{2} \ln \left(\frac{c}{x}\right) \ln \left(1-\frac{\mathrm{I} c}{x}\right)-\frac{\mathrm{I} c b^{2} \ln \left(1+\frac{c^{2}}{x^{2}}\right) \ln \left(\frac{c}{x}+\mathrm{I}\right)}{2}-\frac{\mathrm{I} c b^{2} \ln \left(\frac{c}{x}-\mathrm{I}\right)^{2}}{4}+\frac{\mathrm{I} c b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}\left(\frac{c}{x}-\mathrm{I}\right)\right)}{2}+\frac{\mathrm{I} c b^{2} \ln \left(\frac{c}{x}+\mathrm{I}\right)^{2}}{4}+\mathrm{I} c b^{2} \operatorname{dilog}(1
$$

$$
\left.-\frac{\mathrm{I} c}{x}\right)+2 a b x \arctan \left(\frac{c}{x}\right)+c a b \ln \left(1+\frac{c^{2}}{x^{2}}\right)-2 c a b \ln \left(\frac{c}{x}\right)
$$

Problem 47: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+b \arctan \left(\frac{c}{x}\right)\right)^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 129 leaves, 6 steps):

$$
-\frac{\mathrm{I}\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right)^{3}}{c}-\frac{\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right)^{3}}{x}-\frac{3 b\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right)^{2} \ln \left(\frac{2}{1+\frac{\mathrm{I} c}{x}}\right)}{c}-\frac{3 \mathrm{I} b^{2}\left(a+b \operatorname{arccot}\left(\frac{x}{c}\right)\right) \operatorname{polylog}\left(2,1-\frac{2}{1+\frac{\mathrm{I} c}{x}}\right)}{c}
$$

$$
-\frac{3 b^{3} \operatorname{poly} \log \left(3,1-\frac{2}{1+\frac{\mathrm{I} c}{x}}\right)}{2 c}
$$

Result(type 4, 305 leaves):
$-\frac{a^{3}}{x}+\frac{\mathrm{I} b^{3} \arctan \left(\frac{c}{x}\right)^{3}}{c}-\frac{b^{3} \arctan \left(\frac{c}{x}\right)^{3}}{x}-\frac{3 b^{3} \arctan \left(\frac{c}{x}\right)^{2} \ln \left(1+\frac{\left(1+\frac{\mathrm{I} c}{x}\right)^{2}}{1+\frac{c^{2}}{x^{2}}}\right)}{c}+\frac{3 \mathrm{I} b^{3} \arctan \left(\frac{c}{x}\right) \operatorname{polylog}\left(2,-\frac{\left(1+\frac{\mathrm{I} c}{x}\right)^{2}}{1+\frac{c^{2}}{x^{2}}}\right)}{c}$

$$
\left.\begin{array}{l}
-\frac{3 b^{3} \operatorname{poly} \log \left(3,-\frac{\left(1+\frac{\mathrm{I} c}{x}\right)^{2}}{1+\frac{c^{2}}{x^{2}}}\right)}{2 c}+\frac{3 \mathrm{I} \arctan \left(\frac{c}{x}\right)^{2} a b^{2}}{c}-\frac{3 \arctan \left(\frac{c}{x}\right)^{2} a b^{2}}{x}-\frac{6 \arctan \left(\frac{c}{x}\right) \ln \left(1+\frac{\left(1+\frac{\mathrm{I} c}{x}\right)^{2}}{1+\frac{c^{2}}{x^{2}}}\right) a b^{2}}{c} \\
\\
\\
3 \text { I polylog }\left(2,-\frac{\left(1+\frac{\mathrm{I} c}{x}\right)^{2}}{1+\frac{c^{2}}{x^{2}}}\right) a b^{2} \\
c
\end{array} \frac{3 a^{2} b \arctan \left(\frac{c}{x}\right)}{x}+\frac{3 a^{2} b \ln \left(1+\frac{c^{2}}{x^{2}}\right)}{2 c}\right)
$$

Test results for the 11 problems in "5.3.3 (d+e x)^m (a+b arctan (c $\left.\left.x^{\wedge} n\right)\right)^{\wedge} p . t x t "$
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{2}(a+b \arctan (c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 250 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{2 a b d e x}{c}+\frac{b^{2} e^{2} x}{3 c^{2}}-\frac{b^{2} e^{2} \arctan (c x)}{3 c^{3}}-\frac{2 b^{2} d e x \arctan (c x)}{c}-\frac{b e^{2} x^{2}(a+b \arctan (c x))}{3 c}+\frac{\mathrm{I}\left(3 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x))^{2}}{3 c^{3}} \\
& -\frac{d\left(d^{2}-\frac{3 e^{2}}{c^{2}}\right)(a+b \arctan (c x))^{2}}{3 e}+\frac{(e x+d)^{3}(a+b \arctan (c x))^{2}}{3 e}+\frac{2 b\left(3 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}} \\
& +\frac{b^{2} d e \ln \left(c^{2} x^{2}+1\right)}{c^{2}}+\frac{\mathrm{I} b^{2}\left(3 c^{2} d^{2}-e^{2}\right) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}
\end{aligned}
$$

Result(type 4, 749 leaves):
$\frac{b^{2} e \arctan (c x)^{2} d}{c^{2}}-\frac{b^{2} e^{2} \arctan (c x) x^{2}}{3 c}-\frac{b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) d^{2}}{c}-\frac{a b \ln \left(c^{2} x^{2}+1\right) d^{2}}{c}+2 a b \arctan (c x) x d^{2}+\frac{2 a b e^{2} \arctan (c x) x^{3}}{3}$

$$
\begin{aligned}
& +b^{2} e \arctan (c x)^{2} x^{2} d+\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2} e^{2}}{12 c^{3}}+\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) e^{2}}{6 c^{3}}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2} e^{2}}{12 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) e^{2}}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2} d^{2}}{4 c} \\
& +\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) d^{2}}{2 c}-\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2} d^{2}}{4 c}-\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) d^{2}}{2 c}-\frac{a b e^{2} x^{2}}{3 c}+\frac{b^{2} e^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}+\frac{a b e^{2} \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}} \\
& +\frac{b^{2} d e \ln \left(c^{2} x^{2}+1\right)}{c^{2}}-\frac{2 a b d e x}{c}-\frac{2 b^{2} d e x \arctan (c x)}{c}+\frac{2 a b e \arctan (c x) d}{c^{2}}+2 a b e \arctan (c x) x^{2} d+\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2 c}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln (c x-\mathrm{I}) d^{2}}{2 c}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2 c}+a^{2} x d^{2}+\frac{a^{2} e^{2} x^{3}}{3}+\frac{a^{2} d^{3}}{3 e}+a^{2} e x^{2} d+b^{2} \arctan (c x)^{2} x d^{2} \\
& +\frac{b^{2} e^{2} \arctan (c x)^{2} x^{3}}{3}+\frac{b^{2} e^{2} x}{3 c^{2}}-\frac{b^{2} e^{2} \arctan (c x)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) \ln (c x+\mathrm{I}) d^{2}}{2 c}-\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln (c x-\mathrm{I}) e^{2}}{6 c^{3}} \\
& +\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) e^{2}}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) \ln (c x+\mathrm{I}) e^{2}}{6 c^{3}}-\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) e^{2}}{6 c^{3}}
\end{aligned}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3}(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 605 leaves, 29 steps):

$$
\begin{aligned}
& \frac{3 a b^{2} d e^{2} x}{c^{2}}-\frac{b^{3} e^{3} x}{4 c^{3}}+\frac{b^{3} e^{3} \arctan (c x)}{4 c^{4}}+\frac{3 b^{3} d e^{2} x \arctan (c x)}{c^{2}}+\frac{b^{2} e^{3} x^{2}(a+b \arctan (c x))}{4 c^{2}}-\frac{3 b d e^{2}(a+b \arctan (c x))^{2}}{2 c^{3}} \\
& +\frac{\mathrm{I} b e^{3}(a+b \arctan (c x))^{2}}{4 c^{4}}+\frac{\mathrm{I} b^{3} e^{3} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{4 c^{4}}-\frac{3 b e\left(6 c^{2} d^{2}-e^{2}\right) x(a+b \arctan (c x))^{2}}{4 c^{3}}-\frac{3 b d e^{2} x^{2}(a+b \arctan (c x))^{2}}{2 c} \\
& -\frac{b e^{3} x^{3}(a+b \arctan (c x))^{2}}{4 c}+\frac{\mathrm{I} d(c d-e)(c d+e)(a+b \arctan (c x))^{3}}{c^{3}}-\frac{\left(c^{4} d^{4}-6 c^{2} d^{2} e^{2}+e^{4}\right)(a+b \arctan (c x))^{3}}{4 c^{4} e} \\
& +\frac{(e x+d)^{4}(a+b \arctan (c x))^{3}}{4 e}+\frac{b^{2} e^{3}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{3}}-\frac{3 b^{2} e\left(6 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{2 c^{4}} \\
& +\frac{3 b d(c d-e)(c d+e)(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{2}-\frac{3 b^{3} d e^{2} \ln \left(c^{2} x^{2}+1\right)}{2 c^{3}}-\frac{3 \mathrm{I} b e\left(6 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x))^{2}}{4 c^{4}} \\
& +\frac{3 \mathrm{I} b^{2} d(c d-e)(c d+e)(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c^{3}}-\frac{3 \mathrm{I} b^{3} e\left(6 c^{2} d^{2}-e^{2}\right) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{4 c^{4}} \\
& +
\end{aligned}
$$

Result(type ?, 3576 leaves): Display of huge result suppressed!
Problem 6: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{2}(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 388 leaves, 20 steps):
$\frac{a b^{2} e^{2} x}{c^{2}}+\frac{b^{3} e^{2} x \arctan (c x)}{c^{2}}-\frac{3 \operatorname{I} b d e(a+b \arctan (c x))^{2}}{c^{2}}-\frac{b e^{2}(a+b \arctan (c x))^{2}}{2 c^{3}}-\frac{3 b d e x(a+b \arctan (c x))^{2}}{c}-\frac{b e^{2} x^{2}(a+b \arctan (c x))^{2}}{2 c}$

$$
\begin{aligned}
& +\frac{\mathrm{I}\left(3 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x))^{3}}{3 c^{3}}-\frac{d\left(d^{2}-\frac{3 e^{2}}{c^{2}}\right)(a+b \arctan (c x))^{3}}{3 e}+\frac{(e x+d)^{3}(a+b \arctan (c x))^{3}}{3 e} \\
& -\frac{6 b^{2} d e(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{2}}+\frac{b\left(3 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{3}}-\frac{b^{3} e^{2} \ln \left(c^{2} x^{2}+1\right)}{2 c^{3}} \\
& -\frac{3 \mathrm{I} b^{3} d e \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c^{2}}+\frac{\mathrm{I} b^{2}\left(3 c^{2} d^{2}-e^{2}\right)(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c^{3}} \\
& +\frac{b^{3}\left(3 c^{2} d^{2}-e^{2}\right) \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c^{3}}
\end{aligned}
$$

Result(type ?, 3021 leaves): Display of huge result suppressed!
Problem 7: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 243 leaves, 14 steps):
$-\frac{3 \mathrm{I} b e(a+b \arctan (c x))^{2}}{2 c^{2}}-\frac{3 b e x(a+b \arctan (c x))^{2}}{2 c}+\frac{\mathrm{I} d(a+b \arctan (c x))^{3}}{c}-\frac{\left(d^{2}-\frac{e^{2}}{c^{2}}\right)(a+b \arctan (c x))^{3}}{2 e}$

$$
\begin{aligned}
& +\frac{(e x+d)^{2}(a+b \arctan (c x))^{3}}{2 e}-\frac{3 b^{2} e(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{2}}+\frac{3 b d(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c} \\
& -\frac{3 \mathrm{I} b^{3} e \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c^{2}}+\frac{3 \mathrm{I} b^{2} d(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c}+\frac{3 b^{3} d \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c}
\end{aligned}
$$

Result(type ?, 7461 leaves): Display of huge result suppressed!
Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{3}}{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 292 leaves, 1 step):
$-\frac{(a+b \arctan (c x))^{3} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{e}+\frac{(a+b \arctan (c x))^{3} \ln \left(\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{e}+\frac{3 \mathrm{I} b(a+b \arctan (c x))^{2} \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 e}$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b(a+b \arctan (c x))^{2} \operatorname{polylog}\left(2,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{2 e}-\frac{3 b^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 e} \\
& +\frac{3 b^{2}(a+b \arctan (c x)) \operatorname{poly} \log \left(3,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{2 e}-\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,1-\frac{2}{1-\mathrm{I} c x}\right)}{4 e}+\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{4 e}
\end{aligned}
$$

Result(type ?, 2615 leaves): Display of huge result suppressed!
Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{3}}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 477 leaves, 10 steps):
$\frac{\mathrm{I} c(a+b \arctan (c x))^{3}}{c^{2} d^{2}+e^{2}}+\frac{c^{2} d(a+b \arctan (c x))^{3}}{e\left(c^{2} d^{2}+e^{2}\right)}-\frac{(a+b \arctan (c x))^{3}}{e(e x+d)}-\frac{3 b c(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{c^{2} d^{2}+e^{2}}$
$+\frac{3 b c(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{2} d^{2}+e^{2}}+\frac{3 b c(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{c^{2} d^{2}+e^{2}}$

$$
+\frac{3 \mathrm{I} b^{2} c(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{c^{2} d^{2}+e^{2}}+\frac{3 \mathrm{I} b^{2} c(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c^{2} d^{2}+e^{2}}
$$

$$
-\frac{3 \mathrm{I} b^{2} c(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{c^{2} d^{2}+e^{2}}-\frac{3 b^{3} c \operatorname{polylog}\left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2\left(c^{2} d^{2}+e^{2}\right)}+\frac{3 b^{3} c \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2\left(c^{2} d^{2}+e^{2}\right)}
$$

$$
+\frac{3 b^{3} c \operatorname{polylog}\left(3,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{2\left(c^{2} d^{2}+e^{2}\right)}
$$

Result(type ?, 2959 leaves): Display of huge result suppressed!
Problem 10: Result is not expressed in closed-form.

$$
\int \frac{a+b \arctan \left(c x^{2}\right)}{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 421 leaves, 19 steps):
$\frac{\left(a+b \arctan \left(c x^{2}\right)\right) \ln (e x+d)}{e}+\frac{b c \ln \left(\frac{e\left(1-\left(-c^{2}\right)^{1 / 4} x\right)}{\left(-c^{2}\right)^{1 / 4} d+e}\right) \ln (e x+d)}{2 e \sqrt{-c^{2}}}+\frac{b c \ln \left(-\frac{e\left(1+\left(-c^{2}\right)^{1 / 4} x\right)}{\left(-c^{2}\right)^{1 / 4} d-e}\right) \ln (e x+d)}{2 e \sqrt{-c^{2}}}$

Result(type 7, 137 leaves):
$\frac{a \ln (e x+d)}{e}+\frac{b \ln (e x+d) \arctan \left(c x^{2}\right)}{e}$

Test results for the 337 problems in "5.3.4 u (a+b arctan(c x))^p.txt"
Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \arctan (c x))}{d+\mathrm{I} c d x} \mathrm{~d} x
$$

Optimal(type 4, 100 leaves, 7 steps):

$$
-\frac{\mathrm{I} a x}{c d}-\frac{\mathrm{I} b x \arctan (c x)}{c d}-\frac{(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{2} d}+\frac{\mathrm{I} b \ln \left(c^{2} x^{2}+1\right)}{2 c^{2} d}-\frac{\mathrm{I} b \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c^{2} d}
$$

Result(type 4, 260 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} a x}{c d}+\frac{a \ln \left(c^{2} x^{2}+1\right)}{2 c^{2} d}+\frac{\mathrm{I} a \arctan (c x)}{c^{2} d}-\frac{\mathrm{I} b x \arctan (c x)}{c d}+\frac{b \ln (c x-\mathrm{I}) \arctan (c x)}{c^{2} d}+\frac{\mathrm{I} b \ln \left(c^{4} x^{4}+10 c^{2} x^{2}+9\right)}{8 c^{2} d}+\frac{b \arctan \left(\frac{1}{6} c^{3} x^{3}+\frac{7}{6} c x\right)}{4 c^{2} d} \\
& \quad-\frac{b \arctan \left(\frac{c x}{2}\right)}{4 c^{2} d}+\frac{b \arctan \left(\frac{c x}{2}-\frac{\mathrm{I}}{2}\right)}{2 c^{2} d}+\frac{\mathrm{I} b \ln \left(c^{2} x^{2}+1\right)}{4 c^{2} d}-\frac{b \arctan (c x)}{2 c^{2} d}-\frac{\mathrm{I} b \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 c^{2} d}-\frac{\mathrm{I} b \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 c^{2} d} \\
& \quad+\frac{\mathrm{I} b \ln (c x-\mathrm{I})^{2}}{4 c^{2} d}
\end{aligned}
$$

[^0]$$
\int \frac{a+b \arctan (c x)}{x(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 49 leaves, 2 steps):

$$
\frac{(a+b \arctan (c x)) \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d}+\frac{\mathrm{I} b \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}
$$

Result(type 4, 192 leaves):

$$
\begin{aligned}
& -\frac{a \ln \left(c^{2} x^{2}+1\right)}{2 d}-\frac{\mathrm{I} a \arctan (c x)}{d}+\frac{a \ln (c x)}{d}-\frac{b \ln (c x-\mathrm{I}) \arctan (c x)}{d}+\frac{b \arctan (c x) \ln (c x)}{d}+\frac{\mathrm{I} b \ln (c x) \ln (1+\mathrm{I} c x)}{2 d}-\frac{\mathrm{I} b \ln (c x) \ln (1-\mathrm{I} c x)}{2 d} \\
& \quad+\frac{\mathrm{I} b \operatorname{dilog}(1+\mathrm{I} c x)}{2 d}-\frac{\mathrm{I} b \operatorname{dilog}(1-\mathrm{I} c x)}{2 d}+\frac{\mathrm{I} b \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 d}+\frac{\mathrm{I} b \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 d}-\frac{\mathrm{I} b \ln (c x-\mathrm{I})^{2}}{4 d}
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \arctan (c x)}{x^{3}(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 148 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{b c}{2 d x}-\frac{b c^{2} \arctan (c x)}{2 d}+\frac{-a-b \arctan (c x)}{2 d x^{2}}+\frac{\mathrm{I} c(a+b \arctan (c x))}{d x}-\frac{\mathrm{I} b c^{2} \ln (x)}{d}+\frac{\mathrm{I} b c^{2} \ln \left(c^{2} x^{2}+1\right)}{2 d}-\frac{c^{2}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d} \\
& \quad-\frac{\mathrm{I} b c^{2} \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d} \\
& \text { Result (type 4, } 334 \operatorname{leaves}): \\
& \frac{c^{2} a \ln \left(c^{2} x^{2}+1\right)}{2 d}+\frac{\mathrm{I} b c^{2} \ln \left(c^{2} x^{2}+1\right)}{2 d}-\frac{a}{2 d x^{2}}-\frac{\mathrm{I} c^{2} b \ln (c x) \ln (1+\mathrm{I} c x)}{2 d}-\frac{c^{2} a \ln (c x)}{d}+\frac{c^{2} b \ln (c x-\mathrm{I}) \arctan (c x)}{d}-\frac{b \arctan (c x)}{2 d x^{2}}-\frac{\mathrm{I} c^{2} b \ln (c x)}{d} \\
& \quad-\frac{c^{2} b \arctan (c x) \ln (c x)}{d}+\frac{\mathrm{I} c b \arctan (c x)}{d x}-\frac{\mathrm{I} c^{2} b \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 d}-\frac{b c^{2} \arctan (c x)}{2 d}-\frac{b c}{2 d x}-\frac{\mathrm{I} c^{2} b \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{2 d} \\
& \quad+\frac{\mathrm{I} c^{2} b \ln (c x-\mathrm{I})^{2}}{4 d}+\frac{\mathrm{I} c^{2} b \operatorname{dilog}(1-\mathrm{I} c x)}{2 d}-\frac{\mathrm{I} c^{2} b \operatorname{dilog}(1+\mathrm{I} c x)}{2 d}+\frac{\mathrm{I} c^{2} b \ln (c x) \ln (1-\mathrm{I} c x)}{2 d}+\frac{\mathrm{I} c^{2} a \arctan (c x)}{d}+\frac{\mathrm{I} c a}{d x}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int x(d+\mathrm{I} c d x)(a+b \arctan (c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 186 leaves, 17 steps):
$-\frac{a b d x}{c}+\frac{\mathrm{I} b^{2} d x}{3 c}-\frac{\mathrm{I} b^{2} d \arctan (c x)}{3 c^{2}}-\frac{b^{2} d x \arctan (c x)}{c}-\frac{\mathrm{I} b d x^{2}(a+b \arctan (c x))}{3}+\frac{5 d(a+b \arctan (c x))^{2}}{6 c^{2}}+\frac{d x^{2}(a+b \arctan (c x))^{2}}{2}$

$$
+\frac{\mathrm{I} c d x^{3}(a+b \arctan (c x))^{2}}{3}-\frac{2 \mathrm{I} b d(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{2}}+\frac{b^{2} d \ln \left(c^{2} x^{2}+1\right)}{2 c^{2}}+\frac{b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{2}}
$$

Result(type 4, 415 leaves):

$$
\begin{aligned}
& \frac{d a b \arctan (c x)}{c^{2}}+\frac{d b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{6 c^{2}}-\frac{d b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{6 c^{2}}+\frac{d b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{6 c^{2}}-\frac{d b^{2} \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{6 c^{2}} \\
& +d a b \arctan (c x) x^{2}+\frac{\mathrm{I} c d a^{2} x^{3}}{3}-\frac{\mathrm{I} d a b x^{2}}{3}-\frac{\mathrm{I} d b^{2} \arctan (c x) x^{2}}{3}+\frac{d a^{2} x^{2}}{2}+\frac{d b^{2} \ln (c x-\mathrm{I})^{2}}{12 c^{2}}+\frac{d b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{6 c^{2}}-\frac{d b^{2} \ln (c x+\mathrm{I})^{2}}{12 c^{2}} \\
& \quad-\frac{d b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{6 c^{2}}+\frac{d b^{2} \arctan (c x)^{2}}{2 c^{2}}+\frac{d b^{2} \arctan (c x)^{2} x^{2}}{2}+\frac{b^{2} d \ln \left(c^{2} x^{2}+1\right)}{2 c^{2}}+\frac{\mathrm{I} c d b^{2} \arctan (c x)^{2} x^{3}}{3}+\frac{\mathrm{I} d b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right)}{3 c^{2}} \\
& +\frac{\mathrm{I} d a b \ln \left(c^{2} x^{2}+1\right)}{3 c^{2}}+\frac{2 \mathrm{I} c d a b \arctan (c x) x^{3}}{3}+\frac{\mathrm{I} b^{2} d x}{3 c}-\frac{a b d x}{c}-\frac{b^{2} d x \arctan (c x)}{c}-\frac{\mathrm{I} b^{2} d \arctan (c x)}{3 c^{2}}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d+\mathrm{I} c d x)^{2}(a+b \arctan (c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 279 leaves, 19 steps):
$a b c d^{2} x+b^{2} c d^{2} x \arctan (c x)-\frac{5 d^{2}(a+b \arctan (c x))^{2}}{2}+2 \mathrm{I} c d^{2} x(a+b \arctan (c x))^{2}-\frac{c^{2} d^{2} x^{2}(a+b \arctan (c x))^{2}}{2}-2 d^{2}(a$

$$
\begin{aligned}
& +b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)+4 \mathrm{I} b d^{2}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)-\frac{b^{2} d^{2} \ln \left(c^{2} x^{2}+1\right)}{2}-2 b^{2} d^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right) \\
& -\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)+\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)-\frac{b^{2} d^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2}
\end{aligned}
$$

$$
+\frac{b^{2} d^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2}
$$

Result(type 4, 1541 leaves):
$-\mathrm{I} d^{2} b^{2} \arctan (c x)-\frac{d^{2} a^{2} c^{2} x^{2}}{2}-d^{2} a b \arctan (c x)+d^{2} b^{2} \arctan (c x)^{2} \ln \left(1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+d^{2} b^{2} \arctan (c x)^{2} \ln (c x)-d^{2} b^{2} \arctan (c x)^{2} \ln \left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right.$

$$
-1)+d^{2} b^{2} \arctan (c x)^{2} \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)-\frac{d^{2} b^{2} \arctan (c x)^{2} c^{2} x^{2}}{2}
$$

$+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}$
$-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}$
$-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}$
$-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+4 \mathrm{I} d^{2} a b \arctan (c x) c x+2 d^{2} a b \arctan (c x) \ln (c x)$
$+\mathrm{I} d^{2} a b \operatorname{dilog}(1+\mathrm{I} c x)-2 \mathrm{I} d^{2} a b \ln \left(c^{2} x^{2}+1\right)-\mathrm{I} d^{2} a b \operatorname{dilog}(1-\mathrm{I} c x)+\mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)$
$-2 \mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)-2 \mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{poly} \log \left(2, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+4 \mathrm{I} d^{2} b^{2} \arctan (c x) \ln \left(1+\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)$
$+\frac{\mathrm{I} d^{2} b^{2} \pi \arctan (c x)^{2}}{2}+4 \mathrm{I} d^{2} b^{2} \arctan (c x) \ln \left(1-\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)+2 \mathrm{I} d^{2} a^{2} c x+a b c d^{2} x+b^{2} c d^{2} x \arctan (c x)$
$+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}$
$+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}$
$+\mathrm{I} d^{2} a b \ln (c x) \ln (1+\mathrm{I} c x)-\mathrm{I} d^{2} a b \ln (c x) \ln (1-\mathrm{I} c x)-d^{2} a b \arctan (c x) c^{2} x^{2}$

$$
\begin{aligned}
& \text { I } d^{2} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2} \\
& +2 \mathrm{I} d^{2} b^{2} \arctan (c x)^{2} c x+\frac{d^{2} b^{2} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right.}{2}+\frac{3 d^{2} b^{2} \arctan (c x)^{2}}{2}+2 d^{2} b^{2} \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+2 d^{2} b^{2} \operatorname{polylog}\left(3, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+d^{2} b^{2} \ln (1 \\
& \left.-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)+4 d^{2} b^{2} \operatorname{dilog}\left(1+\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)+4 d^{2} b^{2} \operatorname{dilog}\left(1-\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)+d^{2} a^{2} \ln (c x)
\end{aligned}
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d+\mathrm{I} c d x)^{2}(a+b \arctan (c x))^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 302 leaves, 17 steps):
$-2 \mathrm{I} c d^{2}(a+b \arctan (c x))^{2}-\frac{d^{2}(a+b \arctan (c x))^{2}}{x}-c^{2} d^{2} x(a+b \arctan (c x))^{2}-4 \mathrm{I} c d^{2}(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)-2 b c d^{2}(a$ $+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)+2 b c d^{2}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)-\mathrm{I} b^{2} c d^{2} \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)-\mathrm{I} b^{2} c d^{2} \operatorname{poly} \log (2,1$ $\left.-\frac{2}{1+\mathrm{I} c x}\right)+2 b c d^{2}(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)-2 b c d^{2}(a+b \arctan (c x)) \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)-\mathrm{I} b^{2} c d^{2} \operatorname{poly} \log (3,1$ $\left.-\frac{2}{1+\mathrm{I} c x}\right)+\mathrm{I} b^{2} c d^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)$
Result(type ?, 11958 leaves): Display of huge result suppressed!
Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d+\mathrm{I} c d x)^{3}(a+b \arctan (c x))^{2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 391 leaves, 28 steps):

$$
\begin{aligned}
& -\frac{b^{2} c^{2} d^{3}}{3 x}-\frac{b^{2} c^{3} d^{3} \arctan (c x)}{3}-\frac{b c d^{3}(a+b \arctan (c x))}{3 x^{2}}+2 \mathrm{I} c^{3} d^{3}(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)+\frac{\mathrm{I} b^{2} c^{3} d^{3} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2} \\
& -\frac{d^{3}(a+b \arctan (c x))^{2}}{3 x^{3}}-\frac{3 \mathrm{I} b^{2} c^{3} d^{3} \ln \left(c^{2} x^{2}+1\right)}{2}+\frac{3 c^{2} d^{3}(a+b \arctan (c x))^{2}}{x}-\frac{3 \mathrm{I} b c^{2} d^{3}(a+b \arctan (c x))}{x}+\frac{11 \mathrm{I} c^{3} d^{3}(a+b \arctan (c x))^{2}}{6} \\
& \quad+3 \mathrm{I} b^{2} c^{3} d^{3} \ln (x)-\frac{20 b c^{3} d^{3}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{3}-\frac{\mathrm{I} b^{2} c^{3} d^{3} \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2}-b c^{3} d^{3}(a+b \arctan (c x)) \operatorname{poly} \log (2,1
\end{aligned}
$$

$$
\left.-\frac{2}{1+\mathrm{I} c x}\right)+b c^{3} d^{3}(a+b \arctan (c x)) \text { polylog }\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)+\frac{10 \mathrm{I} b^{2} c^{3} d^{3} \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{3}-\frac{3 \mathrm{I} c d^{3}(a+b \arctan (c x))^{2}}{2 x^{2}}
$$

Result(type 4, 1813 leaves):

$$
c^{3} d^{3} a b \operatorname{dilog}(1+\mathrm{I} c x)-\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}
$$

$$
-\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}
$$

$$
-\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}
$$

$$
+\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}-\frac{3 \mathrm{I} c d^{3} a b \arctan (c x)}{x^{2}}-2 \mathrm{I} c^{3} d^{3} a b \arctan (c x) \ln (c x)
$$

$$
-\frac{c d^{3} b^{2} \arctan (c x)}{3 x^{2}}+\frac{3 c^{2} d^{3} b^{2} \arctan (c x)^{2}}{x}-\frac{2 d^{3} a b \arctan (c x)}{3 x^{3}}-\frac{3 \mathrm{I} c d^{3} a^{2}}{2 x^{2}}+3 \mathrm{I} c^{3} d^{3} b^{2} \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{11 \mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2}}{6}
$$

$$
+3 \mathrm{I} c^{3} d^{3} b^{2} \ln \left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}-1\right)+\frac{\mathrm{I} c^{3} d^{3} b^{2} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2}-2 \mathrm{I} c^{3} d^{3} b^{2} \operatorname{polylog}\left(3, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)-2 \mathrm{I} c^{3} d^{3} b^{2} \operatorname{poly} \log \left(3,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)
$$

$$
-\frac{20 \mathrm{I} c^{3} d^{3} b^{2} \operatorname{dilog}\left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{3}+\frac{20 \mathrm{I} c^{3} d^{3} b^{2} \operatorname{dilog}\left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{3}-\mathrm{I} c^{3} d^{3} a^{2} \ln (c x)-\frac{c d^{3} a b}{3 x^{2}}-\frac{20 c^{3} d^{3} b^{2} \arctan (c x) \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{3}
$$

$$
-2 c^{3} d^{3} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)-2 c^{3} d^{3} b^{2} \arctan (c x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+c^{3} d^{3} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)
$$

$$
\begin{aligned}
& -c^{3} d^{3} a b \operatorname{dilog}(1-\mathrm{I} c x)+\frac{10 c^{3} d^{3} a b \ln \left(c^{2} x^{2}+1\right)}{3}-\frac{20 c^{3} d^{3} a b \ln (c x)}{3}+\frac{c^{3} d^{3} b^{2} \pi \arctan (c x)^{2}}{2}-\frac{d^{3} a^{2}}{3 x^{3}}+\frac{3 c^{2} d^{3} a^{2}}{x}-\frac{d^{3} b^{2} \arctan (c x)^{2}}{3 x^{3}} \\
& +\frac{8 b^{2} c^{3} d^{3} \arctan (c x)}{3}+ \\
& \frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2} \\
& \left.+\frac{6 c^{2} d^{3} a b \arctan (c x)}{x}+\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}+\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right.}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right.}{2}\right)^{3} \arctan (c x)^{2} \\
& -\frac{c^{3} d^{3} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+\mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2} \ln \left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)+c^{3} d^{3} a b \ln (c x) \ln (1+\mathrm{I} c x)-c^{3} d^{3} a b \ln (c x) \ln (1 \\
& \left.-\mathrm{I} c x)-\mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2} \ln \left(1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)-\mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2} \ln (c x)-\frac{\mathrm{I} c^{3} d^{3} b^{2} \sqrt{c^{2} x^{2}+1}}{3\left(\mathrm{I} c x-\sqrt{c^{2} x^{2}+1}+1\right)}+\frac{\mathrm{I} c^{3} d^{3} b^{2} \sqrt{c^{2} x^{2}+1}}{3\left(1+\mathrm{I} c x+\sqrt{c^{2} x^{2}+1}\right.}\right) \\
& -\frac{3 \mathrm{I} c d^{3} b^{2} \arctan (c x)^{2}}{2 x^{2}}-\frac{3 \mathrm{I} c^{2} d^{3} b^{2} \arctan (c x)}{x}-\frac{3 \mathrm{I} c^{2} d^{3} a b}{x}-3 \mathrm{I} c^{3} d^{3} a b \arctan (c x)-\mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2} \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d+\mathrm{I} c d x)^{3}(a+b \arctan (c x))^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 4, 271 leaves, 20 steps):

$$
\begin{aligned}
& -\frac{b^{2} c^{2} d^{3}}{12 x^{2}}-\frac{\mathrm{I} b^{2} c^{3} d^{3}}{x}-\mathrm{I} b^{2} c^{4} d^{3} \arctan (c x)-\frac{b c d^{3}(a+b \arctan (c x))}{6 x^{3}}-\frac{\mathrm{I} b c^{2} d^{3}(a+b \arctan (c x))}{x^{2}}+\frac{7 b c^{3} d^{3}(a+b \arctan (c x))}{2 x} \\
& \quad-\frac{d^{3}(1+\mathrm{I} c x)^{4}(a+b \arctan (c x))^{2}}{4 x^{4}}-4 \mathrm{I} a b c^{4} d^{3} \ln (x)-\frac{11 b^{2} c^{4} d^{3} \ln (x)}{3}-4 \mathrm{I} b c^{4} d^{3}(a+b \arctan (c x)) \ln \left(\frac{2}{1-\mathrm{I} c x}\right)+\frac{11 b^{2} c^{4} d^{3} \ln \left(c^{2} x^{2}+1\right)}{6} \\
& \quad+2 b^{2} c^{4} d^{3} \operatorname{poly} \log (2,-\mathrm{I} c x)-2 b^{2} c^{4} d^{3} \operatorname{poly} \log (2, \mathrm{I} c x)-2 b^{2} c^{4} d^{3} \operatorname{poly} \log \left(2,1-\frac{2}{1-\mathrm{I} c x}\right)
\end{aligned}
$$

Result(type 4, 756 leaves):
$-\frac{d^{3} a^{2}}{4 x^{4}}+\frac{7 c^{3} d^{3} a b}{2 x}-\frac{c d^{3} a b}{6 x^{3}}+\frac{3 c^{2} d^{3} b^{2} \arctan (c x)^{2}}{2 x^{2}}+\frac{11 b^{2} c^{4} d^{3} \ln \left(c^{2} x^{2}+1\right)}{6}+\frac{7 c^{4} d^{3} a b \arctan (c x)}{2}+2 c^{4} d^{3} b^{2} \ln (c x) \ln (1+\mathrm{I} c x)$
$-2 c^{4} d^{3} b^{2} \ln (c x) \ln (1-\mathrm{I} c x)+c^{4} d^{3} b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)-c^{4} d^{3} b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)-c^{4} d^{3} b^{2} \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)$ $+c^{4} d^{3} b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)+\frac{7 c^{3} d^{3} b^{2} \arctan (c x)}{2 x}-\frac{c d^{3} b^{2} \arctan (c x)}{6 x^{3}}-\frac{d^{3} a b \arctan (c x)}{2 x^{4}}-\frac{\mathrm{I} c d^{3} a^{2}}{x^{3}}+\frac{\mathrm{I} c^{3} d^{3} a^{2}}{x}-\frac{2 \mathrm{I} c d^{3} a b \arctan (c x)}{x^{3}}$ $+\frac{2 \mathrm{I} c^{3} d^{3} a b \arctan (c x)}{x}-\frac{b^{2} c^{2} d^{3}}{12 x^{2}}+\frac{3 c^{2} d^{3} a^{2}}{2 x^{2}}-\frac{d^{3} b^{2} \arctan (c x)^{2}}{4 x^{4}}+\frac{7 c^{4} d^{3} b^{2} \arctan (c x)^{2}}{4}-c^{4} d^{3} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)+c^{4} d^{3} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x\right.$ + I) $)-\frac{11 c^{4} d^{3} b^{2} \ln (c x)}{3}+\frac{c^{4} d^{3} b^{2} \ln (c x-\mathrm{I})^{2}}{2}-\frac{c^{4} d^{3} b^{2} \ln (c x+\mathrm{I})^{2}}{2}+2 c^{4} d^{3} b^{2} \operatorname{dilog}(1+\mathrm{I} c x)-2 c^{4} d^{3} b^{2} \operatorname{dilog}(1-\mathrm{I} c x)+\frac{3 c^{2} d^{3} a b \arctan (c x)}{x^{2}}$ $+\frac{\mathrm{I} c^{3} d^{3} b^{2} \arctan (c x)^{2}}{x}+2 \mathrm{I} c^{4} d^{3} a b \ln \left(c^{2} x^{2}+1\right)-4 \mathrm{I} c^{4} d^{3} a b \ln (c x)+2 \mathrm{I} c^{4} d^{3} b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right)-4 \mathrm{I} c^{4} d^{3} b^{2} \arctan (c x) \ln (c x)-\frac{\mathrm{I} c^{2} d^{3} a b}{x^{2}}$ $-\frac{\mathrm{I} c d^{3} b^{2} \arctan (c x)^{2}}{x^{3}}-\frac{\mathrm{I} c^{2} d^{3} b^{2} \arctan (c x)}{x^{2}}-\frac{\mathrm{I} b^{2} c^{3} d^{3}}{x}-\mathrm{I} b^{2} c^{4} d^{3} \arctan (c x)$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{2}(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 175 leaves, 8 steps):
$-\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{d}-\frac{(a+b \arctan (c x))^{2}}{d x}+\frac{2 b c(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d}-\frac{\mathrm{I} c(a+b \arctan (c x))^{2} \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d}$

$$
-\frac{\mathrm{I} b^{2} c \text { polylog }\left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d}+\frac{b c(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d}-\frac{\mathrm{I} b^{2} c \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}
$$

Result(type ?, 9234 leaves): Display of huge result suppressed!
Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{3}(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 257 leaves, 17 steps):
$-\frac{b c(a+b \arctan (c x))}{d x}-\frac{3 c^{2}(a+b \arctan (c x))^{2}}{2 d}-\frac{(a+b \arctan (c x))^{2}}{2 d x^{2}}+\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{d x}+\frac{b^{2} c^{2} \ln (x)}{d}-\frac{b^{2} c^{2} \ln \left(c^{2} x^{2}+1\right)}{2 d}$
$-\frac{2 \mathrm{I} b c^{2}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d}-\frac{c^{2}(a+b \arctan (c x))^{2} \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d}-\frac{b^{2} c^{2} \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d}$

$$
-\frac{\mathrm{I} b c^{2}(a+b \arctan (c x)) \text { polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d}-\frac{b^{2} c^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}
$$

Result(type ?, 2220 leaves): Display of huge result suppressed!

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{4}(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 332 leaves, 26 steps):

$$
\begin{aligned}
& -\frac{b^{2} c^{2}}{3 d x}-\frac{b^{2} c^{3} \arctan (c x)}{3 d}-\frac{b c(a+b \arctan (c x))}{3 d x^{2}}+\frac{\mathrm{I} b c^{2}(a+b \arctan (c x))}{d x}+\frac{11 \mathrm{I} c^{3}(a+b \arctan (c x))^{2}}{6 d}-\frac{(a+b \arctan (c x))^{2}}{3 d x^{3}} \\
& \quad+\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{2 d x^{2}}+\frac{c^{2}(a+b \arctan (c x))^{2}}{d x}-\frac{\mathrm{I} b^{2} c^{3} \ln (x)}{d}+\frac{\mathrm{I} b^{2} c^{3} \ln \left(c^{2} x^{2}+1\right)}{2 d}-\frac{2 d b c^{3}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{3 d} \\
& \quad+\frac{\mathrm{I} c^{3}(a+b \arctan (c x))^{2} \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d}+\frac{4 \mathrm{I} b^{2} c^{3} \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{3 d}-\frac{b c^{3}(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d} \\
& \\
& \quad+\frac{\mathrm{I} b^{2} c^{3} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}
\end{aligned}
$$

Result (type ?, 2379 leaves): Display of huge result suppressed!
Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \arctan (c x))^{2}}{(d+\operatorname{Icdx})^{3}} \mathrm{~d} x
$$

Optimal(type 4, 273 leaves, 26 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} b^{2}}{16 c^{3} d^{3}(-c x+\mathrm{I})^{2}}+\frac{13 b^{2}}{16 c^{3} d^{3}(-c x+\mathrm{I})}-\frac{13 b^{2} \arctan (c x)}{16 c^{3} d^{3}}+\frac{b(a+b \arctan (c x))}{4 c^{3} d^{3}(-c x+\mathrm{I})^{2}}+\frac{7 \mathrm{I} b(a+b \arctan (c x))}{4 c^{3} d^{3}(-c x+\mathrm{I})} \\
& +\frac{\mathrm{I}(a+b \arctan (c x))^{2}}{2 c^{3} d^{3}(-c x+\mathrm{I})^{2}}-\frac{2(a+b \arctan (c x))^{2}}{c^{3} d^{3}(-c x+\mathrm{I})}-\frac{\mathrm{I}(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c^{3} d^{3}}+\frac{b c^{3} d^{3}}{c^{3} d^{3}} \\
& \\
& -\frac{\mathrm{I} b^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{}
\end{aligned}
$$

Result(type 4, 1275 leaves):

$$
\begin{aligned}
& -\frac{b^{2} \pi \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right) \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{\left(c^{2} x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2 c^{3} d^{3}}-\frac{a^{2} \arctan (c x)}{c^{3} d^{3}}+\frac{2 a^{2}}{c^{3} d^{3}(c x-\mathrm{I})} \\
& -\frac{3 b^{2}}{c^{3} d^{3}(8 c x-8 \mathrm{I})}-\frac{2 b^{2} \arctan (c x)^{3}}{3 c^{3} d^{3}}+\frac{4 a b \arctan (c x)}{c^{3} d^{3}(c x-\mathrm{I})}-\frac{b^{2} \arctan (c x) x^{2}}{16 c d^{3}(c x-\mathrm{I})^{2}}-\frac{3 b^{2} \arctan (c x) x}{4 c^{2} d^{3}(c x-\mathrm{I})}+\frac{a b \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{c^{3} d^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b^{2} \arctan (c x)^{2} \ln (c x-\mathrm{I})}{c^{3} d^{3}}-\frac{\mathrm{I} b^{2}}{64 c^{3} d^{3}(c x-\mathrm{I})^{2}}-\frac{7 \mathrm{I} b^{2} \arctan (c x)^{2}}{8 c^{3} d^{3}}+\frac{b^{2} \arctan (c x)}{16 c^{3} d^{3}(c x-\mathrm{I})^{2}}-\frac{b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c^{3} d^{3}} \\
& +\frac{a b \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{c^{3} d^{3}}-\frac{b^{2} x}{32 c^{2} d^{3}(c x-\mathrm{I})^{2}}-\frac{a b \ln (c x-\mathrm{I})^{2}}{2 c^{3} d^{3}}+\frac{7 a b \ln \left(c^{4} x^{4}+10 c^{2} x^{2}+9\right)}{32 c^{3} d^{3}}+\frac{a b}{4 c^{3} d^{3}(c x-\mathrm{I})^{2}}-\frac{7 a b \ln \left(c^{2} x^{2}+1\right)}{16 c^{3} d^{3}} \\
& +\frac{b^{2} \pi \arctan (c x)^{2}}{c^{3} d^{3}}+\frac{\mathrm{I} a^{2} \ln \left(c^{2} x^{2}+1\right)}{2 c^{3} d^{3}}+\frac{\mathrm{I} a^{2}}{2 c^{3} d^{3}(c x-\mathrm{I})^{2}}-\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2 c^{3} d^{3}}+\frac{2 b^{2} \arctan (c x)^{2}}{c^{3} d^{3}(c x-\mathrm{I})} \\
& -\frac{b^{2} \pi \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{\left(c^{2} x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}\right)^{3} \arctan (c x)^{2}}{2 c^{3} d^{3}}-\frac{b^{2} \pi \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{\left(c^{2} x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}\right)^{2} \arctan (c x)^{2}}{c^{3} d^{3}}+\frac{3 \mathrm{I} b^{2} x}{c^{2} d^{3}(8 c x-8 \mathrm{I})} \\
& +\frac{\mathrm{I} b^{2} x^{2}}{64 c d^{3}(c x-\mathrm{I})^{2}}+\frac{\mathrm{I} b^{2} \arctan (c x)^{2}}{2 c^{3} d^{3}(c x-\mathrm{I})^{2}}-\frac{3 \mathrm{I} b^{2} \arctan (c x)}{4 c^{3} d^{3}(c x-\mathrm{I})}-\frac{\mathrm{I} b^{2} \arctan (c x)^{2} \ln \left(\frac{2 \mathrm{I}(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c^{3} d^{3}}-\frac{7 \mathrm{I} a b \arctan \left(\frac{1}{6} c^{3} x^{3}+\frac{7}{6} c x\right)}{16 c^{3} d^{3}} \\
& +\frac{7 \mathrm{I} a b \arctan \left(\frac{c x}{2}\right)}{16 c^{3} d^{3}}-\frac{7 \mathrm{I} a b \arctan \left(\frac{c x}{2}-\frac{\mathrm{I}}{2}\right)}{8 c^{3} d^{3}}-\frac{7 \mathrm{I} a b \arctan (c x)}{8 c^{3} d^{3}}-\frac{7 \mathrm{I} a b}{4 c^{3} d^{3}(c x-\mathrm{I})}+\frac{\mathrm{I} a b \arctan (c x)}{c^{3} d^{3}(c x-\mathrm{I})^{2}} \\
& +\frac{b^{2} \pi \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{\left(c^{2} x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2 c^{3} d^{3}} \\
& -\frac{b^{2} \pi \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right) \operatorname{csgn}\left(\frac{(1+\mathrm{I} c x)^{2}}{\left(c^{2} x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}\right)^{2} \arctan (c x)^{2}}{2 c^{3} d^{3}}+\frac{2 \mathrm{I} a b \arctan (c x) \ln (c x-\mathrm{I})}{c^{3} d^{3}}-\frac{\mathrm{I} b^{2} \arctan (c x) x}{8 c^{2} d^{3}(c x-\mathrm{I})^{2}}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{2}(d+\mathrm{I} c d x)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 355 leaves, 36 steps):

$$
-\frac{\mathrm{I} b^{2} c}{16 d^{3}(-c x+\mathrm{I})^{2}}-\frac{19 b^{2} c}{16 d^{3}(-c x+\mathrm{I})}+\frac{19 b^{2} c \arctan (c x)}{16 d^{3}}+\frac{b c(a+b \arctan (c x))}{4 d^{3}(-c x+\mathrm{I})^{2}}-\frac{9 \mathrm{I} b c(a+b \arctan (c x))}{4 d^{3}(-c x+\mathrm{I})}+\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{8 d^{3}}
$$

$$
\begin{aligned}
& -\frac{(a+b \arctan (c x))^{2}}{d^{3} x}+\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{2 d^{3}(-c x+\mathrm{I})^{2}}+\frac{2 c(a+b \arctan (c x))^{2}}{d^{3}(-c x+\mathrm{I})}+\frac{6 \mathrm{I} c(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}} \\
& -\frac{3 \mathrm{I} c(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}}+\frac{2 b c(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}}-\frac{\mathrm{I} b^{2} c \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}} \\
& +\frac{3 b c(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}}-\frac{3 \mathrm{I} b^{2} c \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d^{3}}
\end{aligned}
$$

Result(type ?, 9658 leaves): Display of huge result suppressed!
Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{(1+\mathrm{I} c x)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 177 leaves, 18 steps):

$$
\begin{aligned}
& -\frac{b^{2}}{54 c(-c x+\mathrm{I})^{3}}+\frac{5 \mathrm{I} b^{2}}{144 c(-c x+\mathrm{I})^{2}}+\frac{11 b^{2}}{144 c(-c x+\mathrm{I})}-\frac{11 b^{2} \arctan (c x)}{144 c}-\frac{\mathrm{I} b(a+b \arctan (c x))}{9 c(-c x+\mathrm{I})^{3}}-\frac{b(a+b \arctan (c x))}{12 c(-c x+\mathrm{I})^{2}}+\frac{\mathrm{I} b(a+b \arctan (c x))}{12 c(-c x+\mathrm{I})} \\
& -\frac{\mathrm{I}(a+b \arctan (c x))^{2}}{24 c}+\frac{\mathrm{I}(a+b \arctan (c x))^{2}}{3 c(1+\mathrm{I} c x)^{3}}
\end{aligned}
$$

Result(type 3, 403 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} b^{2} \arctan (c x)^{2}}{3 c(1+\mathrm{I} c x)^{3}}-\frac{\mathrm{I} a b \arctan (c x)}{12 c}-\frac{11 b^{2}}{144 c(c x-\mathrm{I})}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2}}{96 c}-\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2}}{96 c}-\frac{b^{2} \ln (c x-\mathrm{I}) \arctan (c x)}{24 c}+\frac{b^{2} \arctan (c x) \ln (c x+\mathrm{I})}{24 c} \\
& \quad+\frac{5 \mathrm{I} b^{2}}{144 c(c x-\mathrm{I})^{2}}+\frac{\mathrm{I} a^{2}}{3 c(1+\mathrm{I} c x)^{3}}+\frac{\mathrm{I} a b}{9 c(c x-\mathrm{I})^{3}}-\frac{\mathrm{I} a b}{12 c(c x-\mathrm{I})}+\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{48 c}+\frac{\mathrm{I} b^{2} \arctan (c x)}{9 c(c x-\mathrm{I})^{3}}+\frac{b^{2}}{54 c(c x-\mathrm{I})^{3}} \\
& \quad-\frac{11 b^{2} \arctan (c x)}{144 c}-\frac{b^{2} \arctan (c x)}{12 c(c x-\mathrm{I})^{2}}+\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right) \ln (c x+\mathrm{I})}{48 c}-\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right)}{48 c}-\frac{a b}{12 c(c x-\mathrm{I})^{2}} \\
& \quad+\frac{2 \mathrm{I} a b \arctan (c x)}{3 c(1+\mathrm{I} c x)^{3}}-\frac{\mathrm{I} b^{2} \arctan (c x)}{12 c(c x-\mathrm{I})}
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)^{2}}{c x-\mathrm{I} a c x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 70 leaves, 4 steps):

$$
\frac{\arctan (a x)^{2} \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c}-\frac{\mathrm{I} \arctan (a x) \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{c}+\frac{\operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c}
$$

Result(type 4, 182 leaves):
$\frac{\arctan (a x)^{2} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}-\frac{2 \mathrm{I} \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{2 \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{\arctan (a x)^{2} \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}$
$-\frac{2 \mathrm{I} \arctan (a x) \operatorname{poly} \log \left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{2 \operatorname{polylog}\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int(d+\mathrm{I} c d x)^{3}(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 350 leaves, 26 steps):
$-3 a b^{2} d^{3} x-\frac{11 \mathrm{I} b^{2} d^{3}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c}-\frac{6 \mathrm{I} b^{2} d^{3}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{c}-3 b^{3} d^{3} x \arctan (c x)$

$$
\begin{aligned}
& +\frac{\mathrm{I} b c^{2} d^{3} x^{3}(a+b \arctan (c x))^{2}}{4}+\frac{7 b d^{3}(a+b \arctan (c x))^{2}}{c}-\frac{\mathrm{I} b^{3} d^{3} \arctan (c x)}{4 c}+\frac{3 b c d^{3} x^{2}(a+b \arctan (c x))^{2}}{2} \\
& -\frac{\mathrm{I} b^{2} c d^{3} x^{2}(a+b \arctan (c x))}{4}-\frac{\mathrm{I} d^{3}(1+\mathrm{I} c x)^{4}(a+b \arctan (c x))^{3}}{4 c}+\frac{6 b d^{3}(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{c}+\frac{\mathrm{I} b^{3} d^{3} x}{4} \\
& +\frac{3 b^{3} d^{3} \ln \left(c^{2} x^{2}+1\right)}{2 c}-\frac{21 \mathrm{I} b d^{3} x(a+b \arctan (c x))^{2}}{4}+\frac{11 b^{3} d^{3} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{4}+\frac{3 b^{3} d^{3} \operatorname{poly} \log \left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{c}
\end{aligned}
$$

Result(type ?, 2003 leaves): Display of huge result suppressed!
Problem 36: Result more than twice size of optimal antiderivative.

$$
\int(d+\mathrm{I} c d x)(a+b \arctan (c x))^{3} \mathrm{~d} x
$$

Optimal(type 4, 200 leaves, 11 steps):
$\frac{3 b d(a+b \arctan (c x))^{2}}{2 c}-\frac{3 \mathrm{I} b d x(a+b \arctan (c x))^{2}}{2}-\frac{\mathrm{I} d(1+\mathrm{I} c x)^{2}(a+b \arctan (c x))^{3}}{2 c}+\frac{3 b d(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{c}$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b^{2} d(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c}-\frac{3 \mathrm{I} b^{2} d(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{c}+\frac{3 b^{3} d \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 c} \\
& +\frac{3 b^{3} d \operatorname{poly} \log \left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 c}
\end{aligned}
$$

Result(type ?, 7450 leaves): Display of huge result suppressed!

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{3}}{(d+\mathrm{I} c d x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 161 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b^{3}}{4 c d^{2}(-c x+\mathrm{I})}+\frac{3 \mathrm{I} b^{3} \arctan (c x)}{4 c d^{2}}+\frac{3 b^{2}(a+b \arctan (c x))}{2 c d^{2}(-c x+\mathrm{I})}-\frac{3 b(a+b \arctan (c x))^{2}}{4 c d^{2}}+\frac{3 \mathrm{I} b(a+b \arctan (c x))^{2}}{2 c d^{2}(-c x+\mathrm{I})}-\frac{\mathrm{I}(a+b \arctan (c x))^{3}}{2 c d^{2}} \\
& \quad+\frac{\mathrm{I}(a+b \arctan (c x))^{3}}{c d^{2}(1+\mathrm{I} c x)}
\end{aligned}
$$

Result(type 3, 550 leaves):

$$
\begin{aligned}
& \frac{3 \mathrm{I} b^{3} \arctan (c x) x}{4 d^{2}(c x-\mathrm{I})}-\frac{3 \mathrm{I} a b^{2} \ln (c x-\mathrm{I})^{2}}{8 c d^{2}}-\frac{b^{3} \arctan (c x)^{3}}{2 c d^{2}(c x-\mathrm{I})}-\frac{3 b^{3} x \arctan (c x)^{2}}{4 d^{2}(c x-\mathrm{I})}+\frac{3 \mathrm{I} a^{2} b \arctan (c x)}{c d^{2}(1+\mathrm{I} c x)}-\frac{3 b^{3} \arctan (c x)}{4 c d^{2}(c x-\mathrm{I})}-\frac{\mathrm{I} b^{3} \arctan (c x)^{3} x}{2 d^{2}(c x-\mathrm{I})} \\
& +\frac{\mathrm{I} a^{3}}{c d^{2}(1+\mathrm{I} c x)}-\frac{3 \mathrm{I} a^{2} b \arctan (c x)}{2 c d^{2}}-\frac{3 \mathrm{I} a b^{2} \arctan (c x)}{c d^{2}(c x-\mathrm{I})}-\frac{3 a b^{2} \ln (c x-\mathrm{I}) \arctan (c x)}{2 c d^{2}}+\frac{\mathrm{I} b^{3} \arctan (c x)^{3}}{c d^{2}(1+\mathrm{I} c x)}+\frac{3 a b^{2} \arctan (c x) \ln (c x+\mathrm{I})}{2 c d^{2}} \\
& +\frac{3 \mathrm{I} a b^{2} \arctan (c x)^{2}}{c d^{2}(1+\mathrm{I} c x)}-\frac{3 \mathrm{I} b^{3} \arctan (c x)^{2}}{4 c d^{2}(c x-\mathrm{I})}-\frac{3 a b^{2}}{2 c d^{2}(c x-\mathrm{I})}-\frac{3 a b^{2} \arctan (c x)}{2 c d^{2}}-\frac{3 \mathrm{I} a b^{2} \ln (c x+\mathrm{I})^{2}}{8 c d^{2}}-\frac{3 \mathrm{I} a^{2} b}{2 c d^{2}(c x-\mathrm{I})} \\
& +\frac{3 \mathrm{I} a b^{2} \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right) \ln (c x+\mathrm{I})}{4 c d^{2}}-\frac{3 \mathrm{I} a b^{2} \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{4 c d^{2}}+\frac{3 \mathrm{I} b^{3}}{4 c d^{2}(c x-\mathrm{I})}+\frac{3 \mathrm{I} a b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{4 c d^{2}}
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{3}}{(d+\mathrm{I} c d x)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 316 leaves, 42 steps):

$$
\begin{aligned}
& \frac{\mathrm{I} b^{3}}{108 c d^{4}(-c x+\mathrm{I})^{3}}+\frac{19 b^{3}}{576 c d^{4}(-c x+\mathrm{I})^{2}}-\frac{85 \mathrm{I} b^{3}}{576 c d^{4}(-c x+\mathrm{I})}+\frac{85 \mathrm{I} b^{3} \arctan (c x)}{576 c d^{4}}-\frac{b^{2}(a+b \arctan (c x))}{18 c d^{4}(-c x+\mathrm{I})^{3}}+\frac{5 \mathrm{I} b^{2}(a+b \arctan (c x))}{48 c d^{4}(-c x+\mathrm{I})^{2}} \\
& +\frac{11 b^{2}(a+b \arctan (c x))}{48 c d^{4}(-c x+\mathrm{I})}-\frac{11 b(a+b \arctan (c x))^{2}}{96 c d^{4}}-\frac{\mathrm{I} b(a+b \arctan (c x))^{2}}{6 c d^{4}(-c x+\mathrm{I})^{3}}-\frac{b(a+b \arctan (c x))^{2}}{8 c d^{4}(-c x+\mathrm{I})^{2}}+\frac{\mathrm{I} b(a+b \arctan (c x))^{2}}{8 c d^{4}(-c x+\mathrm{I})} \\
& -\frac{\mathrm{I}(a+b \arctan (c x))^{3}}{24 c d^{4}}+\frac{\mathrm{I}(a+b \arctan (c x))^{3}}{3 c d^{4}(1+\mathrm{I} c x)^{3}}
\end{aligned}
$$

Result(type 3, 880 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} c^{2} b^{3} \arctan (c x)^{3} x^{3}}{24 d^{4}(c x-\mathrm{I})^{3}}+\frac{7 \mathrm{I} c b^{3} x^{2} \arctan (c x)^{2}}{32 d^{4}(c x-\mathrm{I})^{3}}+\frac{85 \mathrm{I} c^{2} b^{3} \arctan (c x) x^{3}}{576 d^{4}(c x-\mathrm{I})^{3}}-\frac{\mathrm{I} a b^{2} \arctan (c x)}{4 c d^{4}(c x-\mathrm{I})}-\frac{\mathrm{I} a b^{2} \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{16 c d^{4}} \\
& +\frac{\mathrm{I} a b^{2} \ln \left(-\frac{\mathrm{I}}{2}(-c x+\mathrm{I})\right) \ln (c x+\mathrm{I})}{16 c d^{4}}+\frac{\mathrm{I} a b^{2} \arctan (c x)}{3 c d^{4}(c x-\mathrm{I})^{3}}+\frac{\mathrm{I} a b^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{16 c d^{4}}+\frac{\mathrm{I} a b^{2} \arctan (c x)^{2}}{c d^{4}(1+\mathrm{I} c x)^{3}}+\frac{\mathrm{I} a^{2} b \arctan (c x)}{c d^{4}(1+\mathrm{I} c x)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a^{2} b}{8 c d^{4}(c x-\mathrm{I})^{2}}-\frac{11 a b^{2}}{48 c d^{4}(c x-\mathrm{I})}+\frac{a b^{2}}{18 c d^{4}(c x-\mathrm{I})^{3}}-\frac{11 a b^{2} \arctan (c x)}{48 c d^{4}}+\frac{b^{3} \arctan (c x)^{3}}{24 c d^{4}(c x-\mathrm{I})^{3}}+\frac{139 b^{3} \arctan (c x)}{576 c d^{4}(c x-\mathrm{I})^{3}}-\frac{b^{3} x \arctan (c x)^{2}}{32 d^{4}(c x-\mathrm{I})^{3}} \\
& +\frac{\mathrm{I} a^{3}}{3 c d^{4}(1+\mathrm{I} c x)^{3}}-\frac{41 \mathrm{I} b^{3}}{216 c d^{4}(c x-\mathrm{I})^{3}}+\frac{29 \mathrm{I} b^{3} \arctan (c x)^{2}}{96 c d^{4}(c x-\mathrm{I})^{3}}+\frac{\mathrm{I} b^{3} \arctan (c x)^{3}}{3 c d^{4}(1+\mathrm{I} c x)^{3}}+\frac{85 \mathrm{I} c b^{3} x^{2}}{576 d^{4}(c x-\mathrm{I})^{3}}-\frac{c b^{3} \arctan (c x)^{3} x^{2}}{8 d^{4}(c x-\mathrm{I})^{3}} \\
& -\frac{11 c^{2} b^{3} x^{3} \arctan (c x)^{2}}{96 d^{4}(c x-\mathrm{I})^{3}}+\frac{41 c b^{3} \arctan (c x) x^{2}}{192 d^{4}(c x-\mathrm{I})^{3}}-\frac{a b^{2} \ln (c x-\mathrm{I}) \arctan (c x)}{8 c d^{4}}+\frac{a b^{2} \arctan (c x) \ln (c x+\mathrm{I})}{8 c d^{4}}-\frac{a b^{2} \arctan (c x)}{4 c d^{4}(c x-\mathrm{I})^{2}}+\frac{\mathrm{I} b^{3} \arctan (c x)^{3} x}{8 d^{4}(c x-\mathrm{I})^{3}} \\
& +\frac{23 \mathrm{I} b^{3} \arctan (c x) x}{192 d^{4}(c x-\mathrm{I})^{3}}-\frac{\mathrm{I} a^{2} b \arctan (c x)}{8 c d^{4}}+\frac{\mathrm{I} a^{2} b}{6 c d^{4}(c x-\mathrm{I})^{3}}-\frac{\mathrm{I} a^{2} b}{8 c d^{4}(c x-\mathrm{I})}-\frac{\mathrm{I} a b^{2} \ln (c x+\mathrm{I})^{2}}{32 c d^{4}}+\frac{5 \mathrm{I} a b^{2}}{48 c d^{4}(c x-\mathrm{I})^{2}}-\frac{\mathrm{I} a b^{2} \ln (c x-\mathrm{I})^{2}}{32 c d^{4}} \\
& +\frac{21 b^{3} x}{64 d^{4}(c x-\mathrm{I})^{3}}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{3}}{x^{2}(d+\mathrm{I} c d x)} \mathrm{d} x
$$

Optimal(type 4, 244 leaves, 10 steps):
$-\frac{\mathrm{I} c(a+b \arctan (c x))^{3}}{d}-\frac{(a+b \arctan (c x))^{3}}{d x}+\frac{3 b c(a+b \arctan (c x))^{2} \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d}-\frac{\mathrm{I} c(a+b \arctan (c x))^{3} \ln \left(2-\frac{2}{1+\mathrm{I} c x}\right)}{d}$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b^{2} c(a+b \arctan (c x)) \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d}+\frac{3 b c(a+b \arctan (c x))^{2} \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}+\frac{3 b^{3} c \operatorname{poly} \log \left(3,-1+\frac{2}{1-\mathrm{I} c x}\right)}{2 d} \\
& -\frac{3 \mathrm{I} b^{2} c(a+b \arctan (c x)) \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d}-\frac{3 b^{3} c \operatorname{poly} \log \left(4,-1+\frac{2}{1+\mathrm{I} c x}\right)}{4 d}
\end{aligned}
$$

Result(type ?, 11232 leaves): Display of huge result suppressed!
Problem 41: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \arctan (c x))^{2}}{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 405 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{a b x}{c e}-\frac{b^{2} x \arctan (c x)}{c e}-\frac{\mathrm{I} d(a+b \arctan (c x))^{2}}{c e^{2}}+\frac{(a+b \arctan (c x))^{2}}{2 c^{2} e}-\frac{d x(a+b \arctan (c x))^{2}}{e^{2}}+\frac{x^{2}(a+b \arctan (c x))^{2}}{2 e} \\
& -\frac{d^{2}(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{e^{3}}-\frac{2 b d(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c e^{2}}+\frac{d^{2}(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{e^{3}} \\
& \quad+\frac{b^{2} \ln \left(c^{2} x^{2}+1\right)}{2 c^{2} e}+\frac{\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{e^{3}}-\frac{\mathrm{I} b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c e^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{e^{3}}-\frac{b^{2} d^{2} \operatorname{polylog}\left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 e^{3}} \\
& +\frac{b^{2} d^{2} \operatorname{polylog}\left(3,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{2 e^{3}}
\end{aligned}
$$

Result(type 4, 1783 leaves):
$-\frac{b^{2} \arctan (c x)^{2} d x}{e^{2}}+\frac{a b \arctan (c x) x^{2}}{e}+\frac{\mathrm{I} b^{2} \arctan (c x)}{c^{2} e}+\frac{a b \arctan (c x)}{c^{2} e}+\frac{b^{2} \arctan (c x)^{2} d^{2} \ln (c x e+c d)}{e^{3}}$
$-\frac{b^{2} d^{2} \arctan (c x)^{2} \ln \left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right)}{e^{3}}-\frac{a b d}{c e^{2}}-\frac{a b x}{c e}-\frac{b^{2} x \arctan (c x)}{c e}-\frac{a^{2} d x}{e^{2}}-\frac{b^{2} \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c^{2} e}$
$+\frac{b^{2} \arctan (c x)^{2}}{2 c^{2} e}+\frac{b^{2} \arctan (c x)^{2} x^{2}}{2 e}-\frac{b^{2} d^{2} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2 e^{3}}+\frac{a^{2} d^{2} \ln (c x e+c d)}{e^{3}}+\frac{a^{2} x^{2}}{2 e}$
$+\frac{c b^{2} d^{3} \arctan (c x)^{2} \ln \left(1-\frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{e^{3}(-\mathrm{I} e+c d)}+\frac{\mathrm{I} a b d^{2} \ln (c x e+c d) \ln \left(\frac{\mathrm{I} e-c x e}{c d+\mathrm{I} e}\right)}{e^{3}}-\frac{\mathrm{I} a b d^{2} \ln (c x e+c d) \ln \left(\frac{\mathrm{I} e+c x e}{\mathrm{I} e-c d}\right)}{e^{3}}$
$-\frac{\left.\frac{\mathrm{I} b^{2} d^{2} \arctan (c x)^{2} \ln \left(1-\frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{e^{2}(-\mathrm{I} e+c d)}+\frac{\mathrm{I} b^{2} d^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2 e^{3}}\right)}{}$
$-\frac{\mathrm{I} c b^{2} d^{3} \arctan (c x) \operatorname{polylog}\left(2, \frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{(-\mathrm{I}}$
$e^{3}(-\mathrm{I} e+c d)$
$-\frac{\mathrm{I} b^{2} d^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right.}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2 e^{3}}$

$$
\begin{aligned}
& -\frac{\left.\mathrm{I} b^{2} d^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right.}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2 e^{3}}+\frac{1}{2 e^{3}}\left(\mathrm{I} b^{2} d^{2} \pi \operatorname{csgn}(\mathrm{I}(\right. \\
& \left.\left.\left.-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(-\frac{\mathrm{I} e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+\frac{(1+\mathrm{I} c x)^{2} c d}{c^{2} x^{2}+1}+\mathrm{I} e+c d\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}\right) \\
& -\frac{\mathrm{I} a b d^{2} \operatorname{dilog}\left(\frac{\mathrm{I} e+c x e}{\mathrm{I} e-c d}\right)}{e^{3}}+\frac{2 \mathrm{I} b^{2} d \operatorname{dilog}\left(1+\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)}{c e^{2}}+\frac{2 \mathrm{I} b^{2} d \operatorname{dilog}\left(1-\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)}{c e^{2}}+\frac{2 a b \arctan (c x) d^{2} \ln (c x e+c d)}{e^{3}} \\
& -\frac{b^{2} d^{2} \arctan (c x) \operatorname{polylog}\left(2, \frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{e^{2}(-\mathrm{I} e+c d)}+\frac{\mathrm{I} b^{2} d^{2} \arctan (c x) \operatorname{poly} \log \left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{e^{3}}-\frac{2 a b \arctan (c x) d x}{e^{2}} \\
& +\frac{\mathrm{I} a b d^{2} \operatorname{dilog}\left(\frac{\mathrm{I} e-c x e}{c d+\mathrm{I} e}\right)}{e^{3}}-\frac{2 b^{2} d \arctan (c x) \ln \left(1+\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)}{c b^{2}}-\frac{2 b^{2} d \arctan (c x) \ln \left(1-\frac{\mathrm{I}(1+\mathrm{I} c x)}{\sqrt{c^{2} x^{2}+1}}\right)}{c e^{2}}+\frac{\mathrm{I} b^{2} d \arctan (c x)^{2}}{c e^{2}} \\
& +\frac{c b^{2} d^{3} \operatorname{polylog}\left(3, \frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{2 e^{3}(-\mathrm{I} e+c d)}+\frac{a b d \ln \left(c^{2} d^{2}-2 c d(c x e+c d)+(c x e+c d)^{2}+e^{2}\right)}{c e^{2}}-\frac{\mathrm{I} b^{2} d^{2} \operatorname{polylog}\left(3, \frac{(\mathrm{I} e-c d)(1+\mathrm{I} c x)^{2}}{(c d+\mathrm{I} e)\left(c^{2} x^{2}+1\right)}\right)}{2 e^{2}(-\mathrm{I} e+c d)}
\end{aligned}
$$

Problem 42: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{3}(e x+d)} \mathrm{d} x
$$

Optimal(type 4, 555 leaves, 21 steps):

$$
\begin{aligned}
& -\frac{b c(a+b \arctan (c x))}{d x}-\frac{c^{2}(a+b \arctan (c x))^{2}}{2 d}-\frac{\mathrm{I} b e^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}}-\frac{(a+b \arctan (c x))^{2}}{2 d x^{2}}+\frac{e(a+b \arctan (c x))^{2}}{d^{2} x} \\
& -\frac{2 e^{2}(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}}+\frac{b^{2} c^{2} \ln (x)}{d}+\frac{e^{2}(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}} \\
& -\frac{e^{2}(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{d^{3}}-\frac{b^{2} c^{2} \ln \left(c^{2} x^{2}+1\right)}{2 d}-\frac{2 b c e(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b e^{2}(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{d^{3}}+\frac{\mathrm{I} b e^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d^{3}} \\
& +\frac{\mathrm{I} c e(a+b \arctan (c x))^{2}}{d^{2}}+\frac{\mathrm{I} b^{2} c e \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d^{2}}-\frac{\mathrm{I} b e^{2}(a+b \arctan (c x)) \operatorname{poly} \log \left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}} \\
& +\frac{b^{2} e^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 d^{3}}-\frac{b^{2} e^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 d^{3}}+\frac{b^{2} e^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d^{3}} \\
& -\frac{b^{2} e^{2} \operatorname{poly} \log \left(3,1-\frac{2 c(e x+d)}{(c d+\mathrm{I} e)(1-\mathrm{I} c x)}\right)}{2 d^{3}}
\end{aligned}
$$

Result(type ?, 2860 leaves): Display of huge result suppressed!
Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)}{x^{3}\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 142 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{a}{2 c^{2} x}+\frac{a^{3} x}{4 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{a^{2} \arctan (a x)}{4 c^{2}}-\frac{\arctan (a x)}{2 c^{2} x^{2}}-\frac{a^{2} \arctan (a x)}{2 c^{2}\left(x^{2} a^{2}+1\right)}+\frac{\mathrm{I} a^{2} \arctan (a x)^{2}}{c^{2}}-\frac{2 a^{2} \arctan (a x) \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}} \\
& \quad+\frac{\mathrm{I} a^{2} \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}}
\end{aligned}
$$

Result(type 4, 340 leaves):

$$
\begin{aligned}
\frac{\mathrm{I} a^{2}}{2 c^{2}} & +\frac{\mathrm{I} a^{2} \arctan (a x)}{8 c^{2}(a x-\mathrm{I})}+\frac{a^{3} \arctan (a x) x}{8 c^{2}(a x+\mathrm{I})}+\frac{a^{2}}{16 c^{2}(a x+\mathrm{I})}+\frac{\mathrm{I} a^{3} x}{16 c^{2}(a x+\mathrm{I})}+\frac{2 \mathrm{I} a^{2} \operatorname{poly} \log \left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}+\frac{a^{3} \arctan (a x) x}{8 c^{2}(a x-\mathrm{I})}+\frac{a^{2}}{16 c^{2}(a x-\mathrm{I})} \\
& +\frac{\mathrm{I} a^{2} \arctan (a x)^{2}}{c^{2}}-\frac{\mathrm{I} a^{3} x}{16 c^{2}(a x-\mathrm{I})}-\frac{a^{2} \arctan (a x)}{2 c^{2}}-\frac{a}{2 c^{2} x}-\frac{\arctan (a x)}{2 c^{2} x^{2}}-\frac{2 a^{2} \arctan (a x) \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}} \\
& +\frac{2 \mathrm{I} a^{2} \operatorname{poly} \log \left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}-\frac{2 a^{2} \arctan (a x) \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}-\frac{\mathrm{I} a^{2} \arctan (a x)}{8 c^{2}(a x+\mathrm{I})}
\end{aligned}
$$

[^1]Optimal(type 3, 68 leaves, 5 steps):

$$
-\frac{\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)}{3 c x^{3}}-\frac{a^{3} \operatorname{arctanh}\left(\frac{\sqrt{a^{2} c x^{2}+c}}{\sqrt{c}}\right) \sqrt{c}}{6}-\frac{a \sqrt{a^{2} c x^{2}+c}}{6 x^{2}}
$$

Result(type 3, 152 leaves):
$-\frac{\sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\left(2 \arctan (a x) a^{2} x^{2}+a x+2 \arctan (a x)\right)}{6 x^{3}}+\frac{a^{3} \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}-1\right)}{6 \sqrt{x^{2} a^{2}+1}}$

$$
-\frac{a^{3} \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{6 \sqrt{x^{2} a^{2}+1}}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3} \arctan (a x)}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 96 leaves, 3 steps):

$$
\frac{x^{3}}{9 a c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{x^{2} \arctan (a x)}{3 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{2 x}{3 a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{2 \arctan (a x)}{3 a^{4} c^{2} \sqrt{a^{2} c x^{2}+c}}
$$

Result (type 3, 243 leaves):

$$
\begin{aligned}
& -\frac{(3 \arctan (a x)+\mathrm{I})\left(\mathrm{I} x^{3} a^{3}+3 x^{2} a^{2}-3 \mathrm{I} a x-1\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{72\left(x^{2} a^{2}+1\right)^{2} c^{3} a^{4}}-\frac{3(\arctan (a x)+\mathrm{I})(1+\mathrm{I} a x) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{8 a^{4} c^{3}\left(x^{2} a^{2}+1\right)} \\
& \quad+\frac{3 \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}(-1+\mathrm{I} a x)(\arctan (a x)-\mathrm{I})}{8 a^{4} c^{3}\left(x^{2} a^{2}+1\right)}+\frac{\sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\left(\mathrm{I} x^{3} a^{3}-3 x^{2} a^{2}-3 \mathrm{I} a x+1\right)(-\mathrm{I}+3 \arctan (a x))}{72 a^{4} c^{3}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right)}
\end{aligned}
$$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2} \arctan (a x)}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 4 steps):

$$
-\frac{1}{9 a^{3} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{x^{3} \arctan (a x)}{3 c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{1}{3 a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 3, 239 leaves):
$\frac{(3 \arctan (a x)+\mathrm{I})\left(a^{3} x^{3}-3 \mathrm{I} x^{2} a^{2}-3 a x+\mathrm{I}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{72\left(x^{2} a^{2}+1\right)^{2} c^{3} a^{3}}+\frac{(\arctan (a x)+\mathrm{I})(a x-\mathrm{I}) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{8 a^{3} c^{3}\left(x^{2} a^{2}+1\right)}$

$$
+\frac{\sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}(a x+\mathrm{I})(\arctan (a x)-\mathrm{I})}{8 a^{3} c^{3}\left(x^{2} a^{2}+1\right)}+\frac{(-\mathrm{I}+3 \arctan (a x)) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\left(a^{3} x^{3}+3 \mathrm{I} x^{2} a^{2}-3 a x-\mathrm{I}\right)}{72\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) c^{3} a^{3}}
$$

Problem 68: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)}{x^{2}\left(a^{2} c x^{2}+c\right)^{5 / 2}} d x
$$

Optimal(type 3, 134 leaves, 9 steps):

$$
-\frac{a}{9 c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{a^{2} x \arctan (a x)}{3 c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{a \operatorname{arctanh}\left(\frac{\sqrt{a^{2} c x^{2}+c}}{\sqrt{c}}\right)}{c^{5 / 2}}-\frac{5 a}{3 c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{5 a^{2} x \arctan (a x)}{3 c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{\arctan (a x) \sqrt{a^{2} c x^{2}+c}}{c^{3} x}
$$

Result(type 3, 368 leaves):

$$
\begin{aligned}
& \frac{a(3 \arctan (a x)+\mathrm{I})\left(a^{3} x^{3}-3 \mathrm{I} x^{2} a^{2}-3 a x+\mathrm{I}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{72 c^{3}\left(x^{2} a^{2}+1\right)^{2}}-\frac{7 a(\arctan (a x)+\mathrm{I})(a x-\mathrm{I}) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{8 c^{3}\left(x^{2} a^{2}+1\right)} \\
& -\frac{7 \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}(a x+\mathrm{I})(\arctan (a x)-\mathrm{I}) a}{8 c^{3}\left(x^{2} a^{2}+1\right)}+\frac{\sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\left(a^{3} x^{3}+3 \mathrm{I} x^{2} a^{2}-3 a x-\mathrm{I}\right)(-\mathrm{I}+3 \arctan (a x)) a}{72 c^{3}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right)} \\
& -\frac{\arctan (a x) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{x c^{3}}-\frac{a \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{\sqrt{x^{2} a^{2}+1} c^{3}}+\frac{a \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}-1\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{\sqrt{x^{2} a^{2}+1} c^{3}}
\end{aligned}
$$

Problem 72: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a^{2} c x^{2}+c\right) \arctan (a x)^{2}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 179 leaves, 15 steps):
$-\frac{a c \arctan (a x)}{x}-\frac{a^{2} c \arctan (a x)^{2}}{2}-\frac{c \arctan (a x)^{2}}{2 x^{2}}-2 a^{2} c \arctan (a x)^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} a x}\right)+a^{2} c \ln (x)-\frac{a^{2} c \ln \left(x^{2} a^{2}+1\right)}{2}$
$-\mathrm{I} a^{2} c \arctan (a x) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)+\mathrm{I} a^{2} c \arctan (a x) \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} a x}\right)-\frac{a^{2} c \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{2}$
$+\frac{a^{2} c \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} a x}\right)}{2}$

Result(type 4, 1166 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2} \\
& -\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2} \\
& -\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2} \\
& +\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2} \\
& -\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2} \\
& +2 a^{2} c \text { polylog }\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{a^{2} c \text { polylog }\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2} \\
& +2 a^{2} c \text { polylog }\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+a^{2} c \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}-1\right)+a^{2} c \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{a c \arctan (a x)}{x}-a^{2} c \arctan (a x)^{2} \ln \left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right) \\
& +a^{2} c \arctan (a x)^{2} \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+a^{2} c \arctan (a x)^{2} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+a^{2} c \arctan (a x)^{2} \ln (a x)-\mathrm{I} a^{2} c \arctan (a x)-\frac{a^{2} c \arctan (a x)^{2}}{2} \\
& -\frac{c \arctan (a x)^{2}}{2 x^{2}}+\mathrm{I} a^{2} c \arctan (a x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)+ \\
& \frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3} \arctan (a x)^{2}}{2}
\end{aligned}
$$

Problem 74: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3} \arctan (a x)^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 256 leaves, 38 steps):

$$
\begin{aligned}
& \frac{29 a^{2} c^{3} x^{2}}{180}+\frac{a^{4} c^{3} x^{4}}{60}-\frac{11 a c^{3} x \arctan (a x)}{6}-\frac{7 a^{3} c^{3} x^{3} \arctan (a x)}{18}-\frac{a^{5} c^{3} x^{5} \arctan (a x)}{15}+\frac{11 c^{3} \arctan (a x)^{2}}{12}+\frac{3 a^{2} c^{3} x^{2} \arctan (a x)^{2}}{2} \\
& +\frac{3 a^{4} c^{3} x^{4} \arctan (a x)^{2}}{4}+\frac{a^{6} c^{3} x^{6} \arctan (a x)^{2}}{6}-2 c^{3} \arctan (a x)^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} a x}\right)+\frac{34 c^{3} \ln \left(x^{2} a^{2}+1\right)}{45}-\mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}(2,1 \\
& \left.-\frac{2}{1+\mathrm{I} a x}\right)+\mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} a x}\right)-\frac{c^{3} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{2}+\frac{c^{3} \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} a x}\right)}{2}
\end{aligned}
$$

Result(type 4, 1216 leaves):
$\frac{13 c^{3}}{90}+\mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)+\frac{11 c^{3} \arctan (a x)^{2}}{12}+c^{3} \arctan (a x)^{2} \ln (a x)-\frac{11 a c^{3} x \arctan (a x)}{6}-\frac{7 a^{3} c^{3} x^{3} \arctan (a x)}{18}$

$$
-\frac{a^{5} c^{3} x^{5} \arctan (a x)}{15}+\frac{3 a^{2} c^{3} x^{2} \arctan (a x)^{2}}{2}+\frac{3 a^{4} c^{3} x^{4} \arctan (a x)^{2}}{4}+\frac{a^{6} c^{3} x^{6} \arctan (a x)^{2}}{6}+\frac{29 a^{2} c^{3} x^{2}}{180}+\frac{a^{4} c^{3} x^{4}}{60}+2 c^{3} \operatorname{poly} \log \left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)
$$

$$
-\frac{68 c^{3} \ln \left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{45}-\frac{c^{3} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2}+2 c^{3} \operatorname{poly} \log \left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-2 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)
$$

$$
-2 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+\frac{\mathrm{I} c^{3} \pi \arctan (a x)^{2}}{2}-c^{3} \arctan (a x)^{2} \ln \left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)+c^{3} \arctan (a x)^{2} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)
$$

$$
-\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3} \arctan (a x)^{2}}{2}-\frac{\mathrm{I} a^{2} c \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2}-2 \mathrm{I} a^{2} c \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \\
& -2 \mathrm{I} a^{2} c \arctan (a x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+\frac{\mathrm{I} a^{2} c \pi \arctan (a x)^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2} \\
& -\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2} \\
& +\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2}+\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3} \arctan (a x)^{2}}{2} \\
& +\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3} \arctan (a x)^{2}}{2}-\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{2}}{2} \\
& +\frac{\mathrm{I} c^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \arctan (a x)^{2}}{2}
\end{aligned}
$$

Problem 77: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2} \arctan (a x)^{2}}{a^{2} c x^{2}+c} \mathrm{~d} x
$$

Optimal(type 4, 92 leaves, 7 steps):

$$
\frac{\mathrm{I} \arctan (a x)^{2}}{a^{3} c}+\frac{x \arctan (a x)^{2}}{a^{2} c}-\frac{\arctan (a x)^{3}}{3 a^{3} c}+\frac{2 \arctan (a x) \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{a^{3} c}+\frac{\mathrm{I} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{a^{3} c}
$$

Result(type 4, 229 leaves):

$$
\begin{aligned}
& \frac{x \arctan (a x)^{2}}{a^{2} c}-\frac{\arctan (a x)^{3}}{3 a^{3} c}-\frac{\arctan (a x) \ln \left(x^{2} a^{2}+1\right)}{a^{3} c}+\frac{\mathrm{I} \ln (a x-\mathrm{I})^{2}}{4 a^{3} c}+\frac{\mathrm{I} \ln (a x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(a x+\mathrm{I})\right)}{2 a^{3} c}-\frac{\mathrm{I} \ln (a x-\mathrm{I}) \ln \left(x^{2} a^{2}+1\right)}{2 a^{3} c} \\
& \quad+\frac{\mathrm{I} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(a x+\mathrm{I})\right)}{2 a^{3} c}-\frac{\mathrm{I} \ln (a x+\mathrm{I})^{2}}{4 a^{3} c}-\frac{\mathrm{I} \ln (a x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{2 a^{3} c}+\frac{\mathrm{I} \ln (a x+\mathrm{I}) \ln \left(x^{2} a^{2}+1\right)}{2 a^{3} c}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(a x-\mathrm{I})\right)}{2 a^{3} c}
\end{aligned}
$$

Problem 78: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)^{2}}{x^{3}\left(a^{2} c x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 163 leaves, 13 steps):
$-\frac{a \arctan (a x)}{c x}-\frac{a^{2} \arctan (a x)^{2}}{2 c}-\frac{\arctan (a x)^{2}}{2 c x^{2}}+\frac{\mathrm{I} a^{2} \arctan (a x)^{3}}{3 c}+\frac{a^{2} \ln (x)}{c}-\frac{a^{2} \ln \left(x^{2} a^{2}+1\right)}{2 c}-\frac{a^{2} \arctan (a x)^{2} \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c}$

$$
+\frac{\mathrm{I} a^{2} \arctan (a x) \text { polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{c}-\frac{a^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c}
$$

Result(type ?, 5490 leaves): Display of huge result suppressed!
Problem 79: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)^{2}}{x\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 153 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{1}{4 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{a x \arctan (a x)}{2 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{\arctan (a x)^{2}}{4 c^{2}}+\frac{\arctan (a x)^{2}}{2 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{\mathrm{I} \arctan (a x)^{3}}{3 c^{2}}+\frac{\arctan (a x)^{2} \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}} \\
& -\frac{\mathrm{I} \arctan (a x) \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}}+\frac{\operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c^{2}}
\end{aligned}
$$

Result(type 4, 1935 leaves):
$\frac{\operatorname{Iarctan}(a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3}}{2 c^{2}}+\frac{a x}{16 c^{2}(a x-\mathrm{I})}+\frac{a x}{16 c^{2}(a x+\mathrm{I})}+\frac{\mathrm{I} \arctan (a x)^{2} \pi}{2 c^{2}}-\frac{2 \mathrm{I} \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}$
$-\frac{2 \operatorname{I} \arctan (a x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{2 c^{2}}$
$+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2}}{4 c^{2}}$
$+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{4 c^{2}}+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}{2 c^{2}}$
$-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{4 c^{2}}-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)}{2 c^{2}}$
$+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)^{2}}{4 c^{2}}$
$+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)}{2 c^{2}}-\frac{\mathrm{I} \arctan (a x) a x}{c^{2}(8 a x+8 \mathrm{I})}+\frac{\mathrm{I} \arctan (a x) a x}{c^{2}(8 a x-8 \mathrm{I})}$
$-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)}{2 c^{2}}$
$-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{2 c^{2}}$
$-\frac{\arctan (a x)^{2} \ln \left(x^{2} a^{2}+1\right)}{2 c^{2}}+\frac{\arctan (a x)^{2} \ln (a x)}{c^{2}}+\frac{\arctan (a x)^{2}}{2 c^{2}\left(x^{2} a^{2}+1\right)}$

$$
\begin{aligned}
& \left.-\frac{\mathrm{I} \arctan (a x)^{3}}{3 c^{2}}-\frac{\arctan (a x)^{2}}{4 c^{2}}+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right.}{2 c^{2}}\right) \\
& \left.-\frac{\mathrm{I} \arctan (a x)^{3}}{3 c^{2}}-\frac{\arctan (a x)^{2}}{4 c^{2}}+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right.}{2 c^{2}}\right) \\
& -\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{4 c^{2}}+\frac{2 \operatorname{polylog}\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}} \\
& +\frac{2 \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}+\frac{\arctan (a x)^{2} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}+\frac{\arctan (a x)^{2} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}-\frac{\arctan (a x)^{2} \ln \left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{c^{2}} \\
& +\frac{\arctan (a x)^{2} \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c^{2}}+\frac{\arctan (a x)^{2} \ln (2)}{c^{2}}-\frac{\arctan (a x)}{c^{2}(8 a x+8 \mathrm{I})}-\frac{\arctan (a x)}{c^{2}(8 a x-8 \mathrm{I})}-\frac{\mathrm{I}}{16 c^{2}(a x+\mathrm{I})}+\frac{\mathrm{I}}{16 c^{2}(a x-\mathrm{I})} \\
& -\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{3}}{4 c^{2}}+\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{3}}{4 c^{2}}-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\left.\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)^{2}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{2 c^{2}} \\
& +\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3}}{2 c^{2}}-\frac{\mathrm{I} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{3}}{4 c^{2}}
\end{aligned}
$$

Problem 95: Unable to integrate problem.

$$
\int \frac{x^{4} \arctan (a x)^{2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 436 leaves, 17 steps):
$\frac{2 x^{3}}{27 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{2 x^{2} \arctan (a x)}{9 a^{3} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{x^{3} \arctan (a x)^{2}}{3 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{22 x}{9 a^{4} c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{22 \arctan (a x)}{9 a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{x \arctan (a x)^{2}}{a^{4} c^{2} \sqrt{a^{2} c x^{2}+c}}$
$-\frac{2 \operatorname{I} \arctan \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{2} \sqrt{x^{2} a^{2}+1}}{a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}+\frac{2 \operatorname{Iarctan}(a x) \operatorname{poly} \log \left(2, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}$
$-\frac{2 \operatorname{I} \arctan (a x) \operatorname{polylog}\left(2, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{2 \operatorname{polylog}\left(3, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}+\frac{2 \operatorname{poly} \log \left(3, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\left.\sqrt{x^{2} a^{2}+1}\right) \sqrt{x^{2} a^{2}+1}}\right.}{a^{5} c^{2} \sqrt{a^{2} c x^{2}+c}}$
Result(type 8, 24 leaves):

$$
\int \frac{x^{4} \arctan (a x)^{2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 99: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(a^{2} c x^{2}+c\right) \arctan (a x)^{3} \mathrm{~d} x
$$

Optimal(type 4, 182 leaves, 34 steps):

$$
\begin{aligned}
& -\frac{c x^{2}}{20 a}+\frac{c x \arctan (a x)}{10 a^{2}}+\frac{c x^{3} \arctan (a x)}{10}-\frac{c \arctan (a x)^{2}}{20 a^{3}}-\frac{c x^{2} \arctan (a x)^{2}}{5 a}-\frac{3 a c x^{4} \arctan (a x)^{2}}{20}-\frac{2 \mathrm{I} c \arctan (a x)^{3}}{15 a^{3}}+\frac{c x^{3} \arctan (a x)^{3}}{3} \\
& \quad+\frac{a^{2} c x^{5} \arctan (a x)^{3}}{5}-\frac{2 c \arctan (a x)^{2} \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{5 a^{3}}-\frac{2 \mathrm{I} c \arctan (a x) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{5 a^{3}}-\frac{c \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{5 a^{3}}
\end{aligned}
$$

Result(type ?, 2554 leaves): Display of huge result suppressed!
Problem 100: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a^{2} c x^{2}+c\right) \arctan (a x)^{3}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 273 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{3 \mathrm{I} a^{2} c \arctan (a x)^{2}}{2}-\frac{3 a c \arctan (a x)^{2}}{2 x}-\frac{a^{2} c \arctan (a x)^{3}}{2}-\frac{c \arctan (a x)^{3}}{2 x^{2}}-2 a^{2} c \arctan (a x)^{3} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} a x}\right)+3 a^{2} c \arctan (a x) \ln (2 \\
& \left.-\frac{2}{1-\mathrm{I} a x}\right)-\frac{3 \mathrm{I} a^{2} c \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2}-\frac{3 \mathrm{I} a^{2} c \arctan (a x)^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{2}+\frac{3 \mathrm{I} a^{2} c \arctan (a x)^{2} \operatorname{poly} \log \left(2,-1+\frac{2}{1+\mathrm{I} a x}\right)}{2} \\
& - \\
& -\frac{3 a^{2} c \arctan (a x) \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{2}+\frac{3 a^{2} c \arctan (a x) \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} a x}\right)}{2}+\frac{3 \mathrm{I} a^{2} c \operatorname{polylog}\left(4,1-\frac{2}{1+\mathrm{I} a x}\right)}{4} \\
& - \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Result(type 4, 567 leaves):
$-3 \mathrm{I} a^{2} c \arctan (a x)^{2} \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{a^{2} c \arctan (a x)^{3}}{2}-\frac{3 a c \arctan (a x)^{2}}{2 x}-\frac{c \arctan (a x)^{3}}{2 x^{2}}-3 \mathrm{I} a^{2} c \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)$ $+3 a^{2} c \arctan (a x) \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{3 \mathrm{I} a^{2} c \operatorname{polylog}\left(4,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{4}-a^{2} c \arctan (a x)^{3} \ln \left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)-3 \mathrm{I} a^{2} c \operatorname{polylog}(2$, $\left.-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{3 a^{2} c \arctan (a x) \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2}+6 \mathrm{I} a^{2} c \operatorname{poly} \log \left(4, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+a^{2} c \arctan (a x)^{3} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)$
$+\frac{3 \mathrm{I} a^{2} c \arctan (a x)^{2} \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2}+6 a^{2} c \arctan (a x) \operatorname{polylog}\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+6 \mathrm{I} a^{2} c \operatorname{poly} \log \left(4,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)$
$+a^{2} c \arctan (a x)^{3} \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-3 \mathrm{I} a^{2} c \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)+3 a^{2} c \arctan (a x) \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)-\frac{3 \mathrm{I} a^{2} c \arctan (a x)^{2}}{2}$
$+6 a^{2} c \arctan (a x) \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)$

Problem 102: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(a^{2} c x^{2}+c\right)^{3} \arctan (a x)^{3} \mathrm{~d} x
$$

Optimal(type 4, 342 leaves, 132 steps):

$$
\begin{aligned}
& -\frac{107 c^{3} x^{2}}{7560 a}-\frac{11 a c^{3} x^{4}}{1260}-\frac{a^{3} c^{3} x^{6}}{504}-\frac{47 c^{3} x \arctan (a x)}{1260 a^{2}}+\frac{239 c^{3} x^{3} \arctan (a x)}{3780}+\frac{59 a^{2} c^{3} x^{5} \arctan (a x)}{1260}+\frac{a^{4} c^{3} x^{7} \arctan (a x)}{84}+\frac{47 c^{3} \arctan (a x)^{2}}{2520 a^{3}} \\
& -\frac{8 c^{3} x^{2} \arctan (a x)^{2}}{105 a}-\frac{89 a c^{3} x^{4} \arctan (a x)^{2}}{420}-\frac{10 a^{3} c^{3} x^{6} \arctan (a x)^{2}}{63}-\frac{a^{5} c^{3} x^{8} \arctan (a x)^{2}}{24}-\frac{16 \mathrm{I} c^{3} \arctan (a x)^{3}}{315 a^{3}}+\frac{c^{3} x^{3} \arctan (a x)^{3}}{3} \\
& \quad+\frac{3 a^{2} c^{3} x^{5} \arctan (a x)^{3}}{5}+\frac{3 a^{4} c^{3} x^{7} \arctan (a x)^{3}}{7}+\frac{a^{6} c^{3} x^{9} \arctan (a x)^{3}}{9}-\frac{16 c^{3} \arctan (a x)^{2} \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{105 a^{3}}+\frac{31 c^{3} \ln \left(x^{2} a^{2}+1\right)}{945 a^{3}} \\
& - \\
& \quad-\frac{16 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{105 a^{3}}-\frac{8 c^{3} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{105 a^{3}}
\end{aligned}
$$

Result(type 4, 1180 leaves):
$4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)$
$-\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{3}}{105 a^{3}}+\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{3}}{105 a^{3}}$

$$
+\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{3}}{105 a^{3}}+\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{105 a^{3}}
$$

$$
-\frac{8 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}{105 a^{3}}
$$

$$
-4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2}
$$

$$
105 a^{3}
$$

$$
-\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2}}{105 a^{3}}
$$

$$
-\frac{4 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)}{105 a^{3}}+\frac{16 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{105 a^{3}}
$$

$$
-\frac{47 c^{3} x \arctan (a x)}{1260 a^{2}}+\frac{59 a^{2} c^{3} x^{5} \arctan (a x)}{1260}+\frac{a^{4} c^{3} x^{7} \arctan (a x)}{84}-\frac{8 c^{3} x^{2} \arctan (a x)^{2}}{105 a}-\frac{89 a c^{3} x^{4} \arctan (a x)^{2}}{420}-\frac{10 a^{3} c^{3} x^{6} \arctan (a x)^{2}}{63}
$$

$$
-\frac{a^{5} c^{3} x^{8} \arctan (a x)^{2}}{24}+\frac{3 a^{2} c^{3} x^{5} \arctan (a x)^{3}}{5}+\frac{3 a^{4} c^{3} x^{7} \arctan (a x)^{3}}{7}+\frac{a^{6} c^{3} x^{9} \arctan (a x)^{3}}{9}-\frac{16 c^{3} \ln (2) \arctan (a x)^{2}}{105 a^{3}}
$$

$$
-\frac{16 c^{3} \arctan (a x)^{2} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{105 a^{3}}+\frac{8 c^{3} \arctan (a x)^{2} \ln \left(x^{2} a^{2}+1\right)}{105 a^{3}}+\frac{62 \mathrm{I} c^{3} \arctan (a x)}{945 a^{3}}+\frac{16 \mathrm{I} c^{3} \arctan (a x)^{3}}{315 a^{3}}-\frac{107 c^{3} x^{2}}{7560 a}-\frac{11 a c^{3} x^{4}}{1260}
$$

$$
-\frac{a^{3} c^{3} x^{6}}{504}+\frac{239 c^{3} x^{3} \arctan (a x)}{3780}+\frac{47 c^{3} \arctan (a x)^{2}}{2520 a^{3}}+\frac{c^{3} x^{3} \arctan (a x)^{3}}{3}-\frac{62 c^{3} \ln \left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{945 a^{3}}-\frac{8 c^{3} \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{105 a^{3}}
$$

$$
-\frac{c^{3}}{135 a^{3}}+\frac{8 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{2}}{105 a^{3}}
$$

Problem 103: Result more than twice size of optimal antiderivative.

$$
\int\left(a^{2} c x^{2}+c\right)^{3} \arctan (a x)^{3} \mathrm{~d} x
$$

Optimal(type 4, 349 leaves, 17 steps):

$$
\begin{aligned}
& -\frac{13 c^{3}\left(x^{2} a^{2}+1\right)}{210 a}-\frac{c^{3}\left(x^{2} a^{2}+1\right)^{2}}{140 a}+\frac{14 c^{3} x \arctan (a x)}{15}+\frac{13 c^{3} x\left(x^{2} a^{2}+1\right) \arctan (a x)}{105}+\frac{c^{3} x\left(x^{2} a^{2}+1\right)^{2} \arctan (a x)}{35} \\
& -\frac{12 c^{3}\left(x^{2} a^{2}+1\right) \arctan (a x)^{2}}{35 a}-\frac{9 c^{3}\left(x^{2} a^{2}+1\right)^{2} \arctan (a x)^{2}}{70 a}-\frac{c^{3}\left(x^{2} a^{2}+1\right)^{3} \arctan (a x)^{2}}{14 a}+\frac{16 \mathrm{I} c^{3} \arctan (a x)^{3}}{35 a}+\frac{16 c^{3} x \arctan (a x)^{3}}{35} \\
& +\frac{8 c^{3} x\left(x^{2} a^{2}+1\right) \arctan (a x)^{3}}{35}+\frac{6 c^{3} x\left(x^{2} a^{2}+1\right)^{2} \arctan (a x)^{3}}{35}+\frac{c^{3} x\left(x^{2} a^{2}+1\right)^{3} \arctan (a x)^{3}}{7}+\frac{48 c^{3} \arctan (a x)^{2} \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{35 a} \\
& \\
& -\frac{7 c^{3} \ln \left(x^{2} a^{2}+1\right)}{15 a}+\frac{48 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{35 a}+\frac{24 c^{3} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{35 a}
\end{aligned}
$$

Result(type 4, 1133 leaves):

$$
\begin{aligned}
& -\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)}{35 a}-\frac{12 a^{3} c^{3} \arctan (a x)^{2} x^{4}}{35} \\
& -\frac{a^{5} c^{3} \arctan (a x)^{2} x^{6}}{14}-\frac{57 a c^{3} \arctan (a x)^{2} x^{2}}{70}+\frac{19 a^{2} c^{3} \arctan (a x) x^{3}}{105}+\frac{a^{4} c^{3} \arctan (a x) x^{5}}{35}+\frac{a^{6} c^{3} \arctan (a x)^{3} x^{7}}{7}+\frac{3 a^{4} c^{3} \arctan (a x)^{3} x^{5}}{5} \\
& +a^{2} c^{3} \arctan (a x)^{3} x^{3}+\frac{48 c^{3} \ln (2) \arctan (a x)^{2}}{35 a}+\frac{48 c^{3} \arctan (a x)^{2} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{35 a}-\frac{24 c^{3} \arctan (a x)^{2} \ln \left(x^{2} a^{2}+1\right)}{35 a}-\frac{14 \mathrm{I} c^{3} \arctan (a x)}{15 a} \\
& -\frac{16 \mathrm{I} c^{3} \arctan (a x)^{3}}{35 a}-\frac{29 c^{3}}{420 a}-\frac{48 \mathrm{I} c^{3} \arctan (a x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{35 a}-\frac{8 a c^{3} x^{2}}{105}-\frac{a^{3} x^{4} c^{3}}{140}+\frac{14 c^{3} \ln \left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{15 a} \\
& +\frac{24 c^{3} \text { polylog }\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{35 a}-\frac{19 c^{3} \arctan (a x)^{2}}{35 a}+\frac{38 c^{3} x \arctan (a x)}{35}+c^{3} x \arctan (a x)^{3} \\
& +\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2}}{35 a} \\
& +\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)}{35 a}
\end{aligned}
$$

$-\frac{24 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{2}}{35 a}$
$-\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{35 a}+\frac{24 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}{35 a}$
$+\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2}}{35 a}+\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{3}}{35 a}$
$-\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{3}}{35 a}-$

$$
\frac{12 \mathrm{I} c^{3} \arctan (a x)^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{3}}{35 a}
$$

Problem 106: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \arctan (a x)^{3}}{a^{2} c x^{2}+c} \mathrm{~d} x
$$

Optimal(type 4, 123 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} \arctan (a x)^{4}}{4 a^{2} c}-\frac{\arctan (a x)^{3} \ln \left(\frac{2}{1+\mathrm{I} a x}\right)}{a^{2} c}-\frac{3 \mathrm{I} \arctan (a x)^{2} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} a x}\right)}{2 a^{2} c}-\frac{3 \arctan (a x) \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} a x}\right)}{2 a^{2} c} \\
& \quad+\frac{3 \mathrm{I} \operatorname{poly} \log \left(4,1-\frac{2}{1+\mathrm{I} a x}\right)}{4 a^{2} c}
\end{aligned}
$$

Result(type 4, 935 leaves):

$$
\frac{\arctan (a x)^{3} \ln \left(x^{2} a^{2}+1\right)}{2 a^{2} c}-\frac{\arctan (a x)^{3} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{a^{2} c}+\frac{\mathrm{I} \arctan (a x)^{4}}{4 a^{2} c}+\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{3} \arctan (a x)^{3} \pi}{4 a^{2} c}
$$

$$
-\frac{3 \arctan (a x) \operatorname{polylog}\left(3,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2 a^{2} c}+\frac{3 \mathrm{I} \arctan (a x)^{2} \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{2 a^{2} c}
$$

$$
-\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right) \arctan (a x)^{3} \pi}{4 a^{2} c}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2} \arctan (a x)^{3} \pi}{4 a^{2} c} \\
& +\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \arctan (a x)^{3} \pi}{4 a^{2} c} \\
& -\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{3} \pi}{2 a^{2} c}-\frac{3 \mathrm{I} \operatorname{polylog}\left(4,-\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)}{4 a^{2} c} \\
& -\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2} \arctan (a x)^{3} \pi}{4 a^{2} c} \\
& +\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{3} \arctan (a x)^{3} \pi}{4 a^{2} c}-\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{3} \arctan (a x)^{3} \pi}{4 a^{2} c} \\
& +\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{2} \arctan (a x)^{3} \pi}{2 a^{2} c}+\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{3} \pi}{4 a^{2} c} \\
& -\frac{\arctan (a x)^{3} \ln (2)}{a^{2} c}
\end{aligned}
$$

Problem 107: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)^{3}}{x\left(a^{2} c x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 109 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} \arctan (a x)^{4}}{4 c}+\frac{\arctan (a x)^{3} \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c}-\frac{3 \mathrm{I} \arctan (a x)^{2} \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c}+\frac{3 \arctan (a x) \operatorname{poly} \log \left(3,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c} \\
& \quad+\frac{3 \mathrm{I} \operatorname{poly} \log \left(4,-1+\frac{2}{1-\mathrm{I} a x}\right)}{4 c}
\end{aligned}
$$

Result(type 4, 1833 leaves):
$-\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{2 c}+\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3}}{2 c}-\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{3} \arctan (a x)^{3} \pi}{4 c}$

$$
\left.-\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{3} \arctan (a x)^{3} \pi \quad+\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{3} \arctan (a x)^{3} \pi}{4 c}
$$

$$
+\frac{\mathrm{I} \pi \arctan (a x)^{3} \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{3}}{2 c}+\frac{\arctan (a x)^{3} \ln (2)}{c}
$$

$$
-\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \arctan (a x)^{3} \pi}{4 c}
$$

$$
+\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)}{2 c}-\frac{\mathrm{I} \arctan (a x)^{4}}{4 c}+\frac{\mathrm{I} \arctan (a x)^{3} \pi}{2 c}
$$

$+\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)}{2 c}$
$-\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)}{2 c}$
$-\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{2 c}$
$-\frac{\mathrm{I} \arctan (a x)^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}}\right)^{2}}{}$
$+\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2} \arctan (a x)^{3} \pi}{4}$
$+\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{3} \pi}{2 c}+\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{\left(x^{2} a^{2}+1\right)\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}}\right)^{2} \arctan (a x)^{3} \pi}{4 c}$ $-\frac{\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right)^{2} \arctan (a x)^{3} \pi}{4 c}+\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right) \arctan (a x)^{3} \pi}{4 c}$
$-\frac{\mathrm{I} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}\right)^{2}\right)^{2} \arctan (a x)^{3} \pi}{2 c}+\frac{\arctan (a x)^{3} \ln \left(1-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}$
$+\frac{6 \arctan (a x) \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{\arctan (a x)^{3} \ln \left(1+\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{6 \arctan (a x) \operatorname{polylog}\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}$
$-\frac{\arctan (a x)^{3} \ln \left(\frac{(1+\mathrm{I} a x)^{2}}{x^{2} a^{2}+1}-1\right)}{c}+\frac{6 \mathrm{I} \text { polylog}\left(4,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{6 \mathrm{I} \operatorname{polylog}\left(4, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}+\frac{\arctan (a x)^{3} \ln (a x)}{c}$
$+\frac{\arctan (a x)^{3} \ln \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)}{c}-\frac{\arctan (a x)^{3} \ln \left(x^{2} a^{2}+1\right)}{2 c}$

Problem 108: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (a x)^{3}}{x^{4}\left(a^{2} c x^{2}+c\right)^{2}} d x
$$

Optimal(type 4, 305 leaves, 35 steps):

$$
\begin{aligned}
& -\frac{3 a^{3}}{8 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{a^{2} \arctan (a x)}{c^{2} x}-\frac{3 a^{4} x \arctan (a x)}{4 c^{2}\left(x^{2} a^{2}+1\right)}-\frac{7 a^{3} \arctan (a x)^{2}}{8 c^{2}}-\frac{a \arctan (a x)^{2}}{2 c^{2} x^{2}}+\frac{3 a^{3} \arctan (a x)^{2}}{4 c^{2}\left(x^{2} a^{2}+1\right)} \\
& +\frac{7 \mathrm{I} a^{3} \arctan (a x) \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}}-\frac{\arctan (a x)^{3}}{3 c^{2} x^{3}}+\frac{2 a^{2} \arctan (a x)^{3}}{c^{2} x}+\frac{a^{4} x \arctan (a x)^{3}}{2 c^{2}\left(x^{2} a^{2}+1\right)}+\frac{5 a^{3} \arctan (a x)^{4}}{8 c^{2}}+\frac{a^{3} \ln (x)}{c^{2}} \\
& -\frac{a^{3} \ln \left(x^{2} a^{2}+1\right)}{2 c^{2}}-\frac{7 a^{3} \arctan (a x)^{2} \ln \left(2-\frac{2}{1-\mathrm{I} a x}\right)}{c^{2}}+\frac{7 \mathrm{I} a^{3} \arctan (a x)^{3}}{3 c^{2}}-\frac{7 a^{3} \operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I} a x}\right)}{2 c^{2}}
\end{aligned}
$$

Result(type ?, 5189 leaves): Display of huge result suppressed!
Problem 111: Unable to integrate problem.

$$
\int \frac{\arctan (a x)^{3} \sqrt{a^{2} c x^{2}+c}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 659 leaves, 22 steps):

$$
-\frac{2 \mathrm{I} a c \arctan \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{3} \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 a c \arctan (a x)^{2} \operatorname{arctanh}\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
+\frac{6 \mathrm{I} a c \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{3 \mathrm{I} a c \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
-\frac{3 \mathrm{I} a c \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 \mathrm{I} a c \arctan (a x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
-\frac{6 a c \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 a c \arctan (a x) \operatorname{polylog}\left(3, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
\begin{aligned}
& \frac{6 a c \arctan (a x) \operatorname{poly} \log \left(3, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{6 a c \operatorname{poly} \log \left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}} \\
&-\frac{6 \mathrm{I} a c \operatorname{poly} \log \left(4, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{6 \mathrm{I} a c \operatorname{polylog}\left(4, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
\end{aligned}
$$

Result(type 8, 24 leaves):

$$
\int \frac{\arctan (a x)^{3} \sqrt{a^{2} c x^{2}+c}}{x^{2}} \mathrm{~d} x
$$

Problem 113: Unable to integrate problem.

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 891 leaves, 37 steps):

$$
-\frac{9 \mathrm{I} a c^{2} \operatorname{polylog}\left(4, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 \mathrm{I} a c^{2} \arctan (a x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
-\frac{6 a c^{2} \arctan (a x)^{2} \operatorname{arctanh}\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 \mathrm{I} a c^{2} \arctan (a x) \arctan \left(\frac{\sqrt{1+\mathrm{I} a x}}{\sqrt{1-\mathrm{I} a x}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
+\frac{3 \mathrm{I} a c^{2} \operatorname{polylog}\left(2, \frac{-\mathrm{I} \sqrt{1+\mathrm{I} a x}}{\sqrt{1-\mathrm{I} a x}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{9 \mathrm{I} a c^{2} \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{2 \sqrt{a^{2} c x^{2}+c}}
$$

$$
-\frac{3 \mathrm{I} a c^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} \sqrt{1+\mathrm{I} a x}}{\sqrt{1-\mathrm{I} a x}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{6 \mathrm{I} a c^{2} \arctan (a x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
-\frac{3 \mathrm{I} a c^{2} \arctan \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{3} \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{6 a c^{2} \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}
$$

$$
\begin{aligned}
& -\frac{9 a c^{2} \arctan (a x) \operatorname{polylog}\left(3, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}+\frac{9 a c^{2} \arctan (a x) \operatorname{polylog}\left(3, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}} \\
& +\frac{6 a c^{2} \operatorname{polylog}\left(3, \frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{9 \mathrm{I} a c^{2} \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{2 \sqrt{a^{2} c x^{2}+c}} \\
& +\frac{9 \mathrm{I} a c^{2} \operatorname{polylog}\left(4, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{\sqrt{a^{2} c x^{2}+c}}-\frac{3 a c \arctan (a x)^{2} \sqrt{a^{2} c x^{2}+c}}{2}-\frac{c \arctan (a x)^{3} \sqrt{a^{2} c x^{2}+c}}{x}+\frac{a^{2} c x \arctan (a x)^{3} \sqrt{a^{2} c x^{2}+c}}{2}
\end{aligned}
$$

Result(type 8, 24 leaves):

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{3}}{x^{2}} \mathrm{~d} x
$$

Problem 119: Unable to integrate problem.

$$
\int \frac{\arctan (a x)^{3}}{\sqrt{a^{2} c x^{2}+c}} d x
$$

Optimal(type 4, 386 leaves, 11 steps):
$-\frac{2 \mathrm{I} \arctan \left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right) \arctan (a x)^{3} \sqrt{x^{2} a^{2}+1}}{a \sqrt{a^{2} c x^{2}+c}}+\frac{3 \mathrm{I} \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a \sqrt{a^{2} c x^{2}+c}}$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} \arctan (a x)^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a \sqrt{a^{2} c x^{2}+c}}-\frac{6 \arctan (a x) \operatorname{polylog}\left(3, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{} \\
& +\frac{6 \arctan (a x) \operatorname{poly} \log \left(3, \frac{\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{x^{2} a^{2}+1}}\right) \sqrt{x^{2} a^{2}+1}}{a \sqrt{a^{2} c x^{2}+c}}-\frac{6 \mathrm{I} \operatorname{polylog}\left(4, \frac{-\mathrm{I}(1+\mathrm{I} a x)}{\sqrt{a^{2} c x^{2}+c}}\right) \sqrt{x^{2} a^{2}+1}}{a \sqrt{a^{2} c x^{2}+c}} \quad 6 \mathrm{I} \mathrm{\operatorname{polylog}(4,} \mathrm{\left.\frac{I(1+Iax)}{} \mathrm{\sqrt{x}^{2} a^{2}+1}\right) \sqrt{x^{2} a^{2}+1}}
\end{aligned}
$$

Result(type 8, 21 leaves):

$$
\int \frac{\arctan (a x)^{3}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Problem 120: Unable to integrate problem.

$$
\int \frac{x^{3} \arctan (a x)^{3}}{\left(a^{2} c x^{2}+c\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 407 leaves, 14 steps):

$$
\frac{6 x}{a^{3} c \sqrt{a^{2} c x^{2}+c}}-\frac{6 \arctan (a x)}{a^{4} c \sqrt{a^{2} c x^{2}+c}}-\frac{3 x \arctan (a x)^{2}}{a^{3} c \sqrt{a^{2} c x^{2}+c}}+\frac{\arctan (a x)^{3}}{a^{4} c \sqrt{a^{2} c x^{2}+c}}+\frac{6 \operatorname{I\operatorname {arctan}(\frac {1+\mathrm {I}ax}{\sqrt {x^{2}a^{2}+1}})\operatorname {arctan}(ax)^{2}\sqrt {x^{2}a^{2}+1}}}{a^{4} c \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{x^{3} \arctan (a x)^{3}}{\left(a^{2} c x^{2}+c\right)^{3 / 2}} d x
$$

Problem 156: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 126 leaves, 12 steps):

$$
\frac{1}{a^{3} c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)}-\frac{1}{a^{3} c^{2} \arctan (a x) \sqrt{a^{2} c x^{2}+c}}-\frac{\operatorname{Si}(\arctan (a x)) \sqrt{x^{2} a^{2}+1}}{4 a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}}+\frac{3 \operatorname{Si}(3 \arctan (a x)) \sqrt{x^{2} a^{2}+1}}{4 a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 4, 585 leaves):
$-\frac{1}{8 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x) c^{3} a^{3}}\left(\mathrm{I}\left(3 \arctan (a x) \mathrm{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-\sqrt{x^{2} a^{2}+1} x^{3} a^{3}+6 \arctan (a x) \mathrm{Ei}_{1}(3 \mathrm{I} \arctan (a x)) x^{2} a^{2}\right.\right.$
$\left.\left.-3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x a+3 \mathrm{Ei}_{1}(3 \operatorname{I} \arctan (a x)) \arctan (a x)+\mathrm{I} \sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$
$+\frac{1}{8 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x) c^{3} a^{3}}\left(\mathrm{I}\left(3 \arctan (a x) \operatorname{Ei}_{1}(-3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-\sqrt{x^{2} a^{2}+1} x^{3} a^{3}+6 \arctan (a x) \operatorname{Ei}_{1}(\right.\right.$
$\left.\left.-3 \mathrm{I} \arctan (a x)) x^{2} a^{2}+3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x a-\mathrm{I} \sqrt{x^{2} a^{2}+1}+3 \mathrm{Ei}_{1}(-3 \mathrm{I} \arctan (a x)) \arctan (a x)\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$
$+\frac{\mathrm{I}\left(\arctan (a x) \mathrm{Ei}_{1}(\operatorname{Iarctan}(a x)) x^{2} a^{2}+\mathrm{Ei}_{1}(\operatorname{Iarctan}(a x)) \arctan (a x)+\sqrt{x^{2} a^{2}+1} x a+\mathrm{I} \sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{8\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x) c^{3} a^{3}}$

$$
-\frac{\mathrm{I}\left(\arctan (a x) \mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) x^{2} a^{2}+\mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) \arctan (a x)+\sqrt{x^{2} a^{2}+1} x a-\mathrm{I} \sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}}{8\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x) c^{3} a^{3}}
$$

Problem 173: Unable to integrate problem.

$$
\int\left(\frac{x^{3}}{\left(x^{2} a^{2}+1\right) \arctan (a x)^{3}}-\frac{3 x^{2}}{2 a \arctan (a x)^{2}}\right) \mathrm{d} x
$$

Optimal(type 3, 14 leaves, 2 steps):

$$
-\frac{x^{3}}{2 a \arctan (a x)^{2}}
$$

Result(type 8, 38 leaves):

$$
\int\left(\frac{x^{3}}{\left(x^{2} a^{2}+1\right) \arctan (a x)^{3}}-\frac{3 x^{2}}{2 a \arctan (a x)^{2}}\right) \mathrm{d} x
$$

Problem 180: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 156 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{x^{3}}{2 a c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{2}}+\frac{3}{2 a^{4} c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)}-\frac{3}{2 a^{4} c^{2} \arctan (a x) \sqrt{a^{2} c x^{2}+c}}-\frac{3 \operatorname{Si}(\arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a^{4} c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad+\frac{9 \operatorname{Si}(3 \arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a^{4} c^{2} \sqrt{a^{2} c x^{2}+c}}
\end{aligned}
$$

Result(type 4, 847 leaves):
$\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} c^{3} a^{4}}\left(\mathrm{I}\left(9 \arctan (a x)^{2} \mathrm{Ei}_{1}(-3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(\right.\right.$ $-3 \mathrm{I} \arctan (a x)) x^{2} a^{2}+\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+9 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a-3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a$ $\left.\left.+9 \mathrm{Ei}_{1}(-3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}-3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$
$-\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} c^{3} a^{4}}\left(\mathrm{I}\left(9 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}\right.\right.$
$+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{2} a^{2}-\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}-9 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a$
$\left.\left.+9 \mathrm{Ei}_{1}(3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}+3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a+3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$

$$
+\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x)^{2} c^{3} a^{4}}\left(3 \mathrm { I } \left(\arctan (a x)^{2} \operatorname{Ei}_{1}(\operatorname{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{I} \sqrt{x^{2} a^{2}+1} x a\right.\right.
$$

$$
\left.\left.+\mathrm{Ei}_{1}(\mathrm{I} \arctan (a x)) \arctan (a x)^{2}+\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

$$
-\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x)^{2} c^{3} a^{4}}\left(3 \mathrm { I } \left(\arctan (a x)^{2} \mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) \arctan (a x)^{2}\right.\right.
$$

$$
\left.\left.-\mathrm{I} \sqrt{x^{2} a^{2}+1} x a-\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

Problem 181: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{3}} d x
$$

Optimal(type 4, 153 leaves, 20 steps):

$$
\begin{aligned}
& -\frac{x}{2 a c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{2}}-\frac{3}{2 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)}+\frac{1}{a^{2} c^{2} \arctan (a x) \sqrt{a^{2} c x^{2}+c}}-\frac{\operatorname{Si}(\arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a^{2} c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad-\frac{9 \operatorname{Si}(3 \arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a^{2} c^{2} \sqrt{a^{2} c x^{2}+c}}
\end{aligned}
$$

Result(type 4, 847 leaves):
$-\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} c^{3} a^{2}}\left(\mathrm{I}\left(9 \arctan (a x)^{2} \operatorname{Ei}_{1}(-3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(\right.\right.$ $-3 \mathrm{I} \arctan (a x)) x^{2} a^{2}+\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+9 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a-3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a$ $\left.\left.+9 \mathrm{Ei}_{1}(-3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}-3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$ $-\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} a^{2} c^{3} \arctan (a x)^{2}}\left(\mathrm{I}\left(\arctan (a x)^{2} \mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) \arctan (a x)^{2}\right.\right.$ $\left.\left.-\mathrm{I} \sqrt{x^{2} a^{2}+1} x a-\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$
$+\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} c^{3} a^{2}}\left(\mathrm{I}\left(9 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}\right.\right.$
$+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{2} a^{2}-\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}-9 \operatorname{Iarctan}(a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a$ $\left.\left.+9 \mathrm{Ei}_{1}(3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}+3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a+3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)$
$+\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} a^{2} c^{3} \arctan (a x)^{2}}\left(\mathrm{I}\left(\arctan (a x)^{2} \mathrm{Ei}_{1}(\operatorname{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{I} \sqrt{x^{2} a^{2}+1} x a\right.\right.$

$$
\left.\left.+\mathrm{Ei}_{1}(\operatorname{I} \arctan (a x)) \arctan (a x)^{2}+\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

Problem 182: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 125 leaves, 14 steps):

$$
-\frac{1}{2 a c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{2}}+\frac{3 x}{2 c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)}-\frac{3 \operatorname{Ci}(\arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{9 \operatorname{Ci}(3 \arctan (a x)) \sqrt{x^{2} a^{2}+1}}{8 a c^{2} \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 4, 843 leaves):
$\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} a c^{3}}\left(\left(9 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}\right.\right.$

$$
+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(3 \operatorname{I} \arctan (a x)) x^{2} a^{2}-\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}-9 \operatorname{I} \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a
$$

$$
\left.\left.+9 \mathrm{Ei}_{1}(3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}+3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a+3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

$$
+\frac{1}{16 \sqrt{x^{2} a^{2}+1}\left(x^{4} a^{4}+2 x^{2} a^{2}+1\right) \arctan (a x)^{2} a c^{3}}\left(\left(9 \arctan (a x)^{2} \operatorname{Ei}_{1}(-3 \operatorname{I} \arctan (a x)) x^{4} a^{4}-3 \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+18 \arctan (a x)^{2} \operatorname{Ei}_{1}(\right.\right.
$$

$$
-3 \mathrm{I} \arctan (a x)) x^{2} a^{2}+\mathrm{I} \sqrt{x^{2} a^{2}+1} x^{3} a^{3}+9 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+3 \sqrt{x^{2} a^{2}+1} x^{2} a^{2}+9 \arctan (a x) \sqrt{x^{2} a^{2}+1} x a-3 \mathrm{I} \sqrt{x^{2} a^{2}+1} x a
$$

$$
\left.\left.+9 \mathrm{Ei}_{1}(-3 \mathrm{I} \arctan (a x)) \arctan (a x)^{2}-3 \mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

$$
+\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x)^{2} a c^{3}}\left(3 \left(\arctan (a x)^{2} \operatorname{Ei}_{1}(\operatorname{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{I} \sqrt{x^{2} a^{2}+1} x a\right.\right.
$$

$$
\left.\left.+\mathrm{Ei}_{1}(\operatorname{Iarctan}(a x)) \arctan (a x)^{2}+\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

$$
+\frac{1}{16\left(x^{2} a^{2}+1\right)^{3 / 2} \arctan (a x)^{2} a c^{3}}\left(3 \left(\arctan (a x)^{2} \mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) x^{2} a^{2}+\arctan (a x) \sqrt{x^{2} a^{2}+1} x a+\mathrm{Ei}_{1}(-\mathrm{I} \arctan (a x)) \arctan (a x)^{2}\right.\right.
$$

$$
\left.\left.-\mathrm{I} \sqrt{x^{2} a^{2}+1} x a-\mathrm{I} \arctan (a x) \sqrt{x^{2} a^{2}+1}-\sqrt{x^{2} a^{2}+1}\right) \sqrt{c(a x-\mathrm{I})(a x+\mathrm{I})}\right)
$$

Problem 222: Unable to integrate problem.

$$
\int \frac{x \arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 105 leaves, 6 steps):

$$
-\frac{\arctan (a x)^{3} / 2}{a^{2} c \sqrt{a^{2} c x^{2}+c}}-\frac{3 \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{4 a^{2} c \sqrt{a^{2} c x^{2}+c}}+\frac{3 x \sqrt{\arctan (a x)}}{2 a c \sqrt{a^{2} c x^{2}+c}}
$$

Result (type 8, 22 leaves):

$$
\int \frac{x \arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 225: Unable to integrate problem.

$$
\int \frac{x \arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 200 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{\arctan (a x)^{3 / 2}}{3 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2}}-\frac{\text { FresnelS }\left(\frac{\sqrt{6} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{6} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{144 a^{2} c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{3 \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{16 a^{2} c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad+\frac{3 x \sqrt{\arctan (a x)}}{8 a c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad \frac{\sin (3 \arctan (a x)) \sqrt{x^{2} a^{2}+1} \sqrt{\arctan (a x)}}{24 a^{2} c^{2} \sqrt{a^{2} c x^{2}+c}}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x \arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 226: Unable to integrate problem.

$$
\int \frac{\arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 202 leaves, 14 steps):

$$
\begin{aligned}
& \frac{x \arctan (a x)^{3 / 2}}{3 c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{2 x \arctan (a x)^{3 / 2}}{3 c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{\text { FresnelC }\left(\frac{\sqrt{6} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{6} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{144 a c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad+\frac{\sqrt{\arctan (a x)}}{6 a c\left(a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{\sqrt{\arctan (a x)}}{a c^{2} \sqrt{a^{2} c x^{2}+c}}
\end{aligned}
$$

$$
\int \frac{\arctan (a x)^{3 / 2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 251: Unable to integrate problem.

$$
\int \frac{x}{\left(a^{2} c x^{2}+c\right)^{3 / 2} \sqrt{\arctan (a x)}} \mathrm{d} x
$$

Optimal(type 4, 50 leaves, 4 steps):

$$
\frac{\text { FresnelS }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{a^{2} c \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x}{\left(a^{2} c x^{2}+c\right)^{3 / 2} \sqrt{\arctan (a x)}} \mathrm{d} x
$$

Problem 267: Unable to integrate problem.

$$
\int \frac{1}{\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 78 leaves, 5 steps):

$$
-\frac{2 \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{a c \sqrt{a^{2} c x^{2}+c}}-\frac{2}{a c \sqrt{a^{2} c x^{2}+c} \sqrt{\arctan (a x)}}
$$

Result(type 8, 21 leaves):

$$
\int \frac{1}{\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{3 / 2}} \mathrm{~d} x
$$

Problem 269: Unable to integrate problem.

$$
\int \frac{1}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 129 leaves, 9 steps):
$-\frac{3 \text { FresnelS }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{2 a c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{\operatorname{FresnelS}\left(\frac{\sqrt{6} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{6} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{2 a c^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{2}{a c\left(a^{2} c x^{2}+c\right)^{3 / 2} \sqrt{\arctan (a x)}}$

Result(type 8, 21 leaves):

$$
\int \frac{1}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{3 / 2}} \mathrm{~d} x
$$

Problem 290: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 184 leaves, 27 steps):

$$
\begin{aligned}
& -\frac{2 x^{2}}{3 a c\left(a^{2} c x^{2}+c\right)^{3 / 2} \arctan (a x)^{3 / 2}}-\frac{\text { FresnelC }\left(\frac{\sqrt{2} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{2} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{3 a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}}+\frac{\text { FresnelC }\left(\frac{\sqrt{6} \sqrt{\arctan (a x)}}{\sqrt{\pi}}\right) \sqrt{6} \sqrt{\pi} \sqrt{x^{2} a^{2}+1}}{a^{3} c^{2} \sqrt{a^{2} c x^{2}+c}} \\
& \quad-\frac{8 x}{3 a^{2} c\left(a^{2} c x^{2}+c\right)^{3 / 2} \sqrt{\arctan (a x)}}+\frac{4 x^{3}}{3 c\left(a^{2} c x^{2}+c\right)^{3 / 2} \sqrt{\arctan (a x)}} \\
& \text { Result (type 8, 24 leaves): } \\
& \int \frac{x^{2}}{\left(a^{2} c x^{2}+c\right)^{5 / 2} \arctan (a x)^{5 / 2}} \mathrm{~d} x
\end{aligned}
$$

Problem 302: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}(a+b \arctan (c x))}{\left(x^{2} e+d\right)^{2}} d x
$$

Optimal(type 4, 334 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{b c^{2} d \arctan (c x)}{2\left(c^{2} d-e\right) e^{2}}+\frac{d(a+b \arctan (c x))}{2 e^{2}\left(x^{2} e+d\right)}-\frac{(a+b \arctan (c x)) \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{e^{2}}+\frac{(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{2 e^{2}} \\
& +\frac{(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{2 e^{2}}+\frac{\mathrm{I} b \operatorname{poly} \log \left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 e^{2}}-\frac{\mathrm{I} b \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{4 e^{2}} \\
& \quad-\frac{\mathrm{I} b \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{4 e^{2}}+\frac{b c \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right) \sqrt{d}}{2\left(c^{2} d-e\right) e^{3 / 2}}
\end{aligned}
$$

Result(type 4, 759 leaves):
$\frac{c^{2} a d}{2 e^{2}\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 e^{2}}+\frac{c^{2} b \arctan (c x) d}{2 e^{2}\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{b \arctan (c x) \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 e^{2}}$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \ln (c x-\mathrm{I}) \ln \left(\frac{\operatorname{RootOf}\left(e_{-} Z^{2}+2 \mathrm{I} _Z e+c^{2} d-e, \text { index }=2\right)-c x+\mathrm{I}}{\operatorname{RootOf}\left(e_{-} Z^{2}+2 \mathrm{I} Z e+c^{2} d-e, \text { index }=2\right)}\right)}{4 e^{2}}+\frac{\mathrm{I} b \ln (c x-\mathrm{I}) \ln \left(c^{2} e x^{2}+c^{2} d\right)}{4 e^{2}} \\
& +\frac{\mathrm{I} b \ln (c x+\mathrm{I}) \ln \left(\frac{\operatorname{RootOf}\left(e_{-} Z^{2}-2 \mathrm{I}_{-} Z e+c^{2} d-e, \operatorname{index}=2\right)-c x-\mathrm{I}}{\operatorname{RootOf}\left(e_{-} Z^{2}-2 \mathrm{I}_{-} Z e+c^{2} d-e, \text { index }=2\right)}\right)}{4 e^{2}}+\frac{\mathrm{I} b \operatorname{dilog}\left(\frac{\operatorname{RootOf}\left(e _Z^{2}-2 \mathrm{I}_{-} Z e+c^{2} d-e, \text { index }=1\right)-c x-\mathrm{I}}{\operatorname{RootOf}\left(e e_{-} Z^{2}-2 \mathrm{I}_{_} Z e+c^{2} d-e, \text { index }=1\right)}\right.}{4 e^{2}} \\
& +\frac{\mathrm{I} b \ln (c x+\mathrm{I}) \ln \left(\frac{\operatorname{RootOf}\left(e Z^{2}-2 \mathrm{I} Z e+c^{2} d-e, \text { index }=1\right)-c x-\mathrm{I}}{\operatorname{RootOf}\left(e Z^{2}-2 \mathrm{I} Z e+c^{2} d-e, \text { index }=1\right)}\right)}{4 e^{2}} \\
& -\frac{\mathrm{I} b \ln (c x-\mathrm{I}) \ln \left(\frac{\operatorname{RootOf}\left(e_{-} Z^{2}+2 \mathrm{I}_{-} Z e+c^{2} d-e, \text { index }=1\right)-c x+\mathrm{I}}{\operatorname{RootOf}\left(e_{-} Z^{2}+2 \mathrm{I} _Z e+c^{2} d-e, \text { index }=1\right)}\right)}{4 e^{2}}-\frac{\mathrm{I} b \operatorname{dilog}\left(\frac{\operatorname{RootOf}\left(e _Z^{2}+2 \mathrm{I} _Z e+c^{2} d-e, \text { index }=1\right)-c x+\mathrm{I}}{\operatorname{RootOf}\left(e _Z^{2}+2 \mathrm{I} _Z e+c^{2} d-e, \text { index }=1\right)}\right.}{4 e^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \ln (c x+\mathrm{I}) \ln \left(c^{2} e x^{2}+c^{2} d\right)}{4 e^{2}}-\frac{b c^{2} d \arctan (c x)}{2\left(c^{2} d-e\right) e^{2}}+\frac{c b d \arctan \left(\frac{x e}{\sqrt{e d}}\right)}{2 e\left(c^{2} d-e\right) \sqrt{e d}}
\end{aligned}
$$

Problem 304: Result is not expressed in closed-form.

$$
\int \frac{a+b \arctan (c x)}{x\left(x^{2} e+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 366 leaves, 19 steps):
$-\frac{b c^{2} \arctan (c x)}{2 d\left(c^{2} d-e\right)}+\frac{a+b \arctan (c x)}{2 d\left(x^{2} e+d\right)}+\frac{a \ln (x)}{d^{2}}+\frac{(a+b \arctan (c x)) \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{d^{2}}-\frac{(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{2 d^{2}}$

$$
\begin{aligned}
& -\frac{(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{2 d^{2}}+\frac{\mathrm{I} b \operatorname{poly} \log (2,-\mathrm{I} c x)}{2 d^{2}}-\frac{\mathrm{I} b \operatorname{poly} \log (2, \mathrm{I} c x)}{2 d^{2}}-\frac{\mathrm{I} b \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 d^{2}} \\
& +\frac{\mathrm{I} b \operatorname{poly} \log \left(2,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{4 d^{2}}+\frac{\mathrm{I} b \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{4 d^{2}}+\frac{b c \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right) \sqrt{e}}{2 d^{3 / 2}\left(c^{2} d-e\right)}
\end{aligned}
$$

Result(type 7, 1763 leaves):

$$
\begin{aligned}
& \frac{a c^{2}}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}-\frac{a \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 d^{2}}+\frac{a \ln (c x)}{d^{2}}-\frac{b c^{2} e \arctan (c x)}{2 d\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)}-\frac{b c^{4} e \arctan (c x) x^{2}}{2 d\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)} \\
& \left.+\frac{\mathrm{I} b c^{3} \sqrt{e d} \operatorname{arctanh}\left(\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e\right)}{4 c \sqrt{e d}}\right) \\
& -\frac{\mathrm{I} b e \ln \left(\frac{c^{2} d(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+\frac{2 c^{2} d(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-\frac{e(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+c^{2} d+\frac{2 e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-e\right)}{8 d^{2}\left(c^{2} d-e\right)}+\frac{\mathrm{I} b e \operatorname{dilog}\left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d^{2}\left(c^{2} d-e\right)} \\
& \left.\left.-\frac{\mathrm{I} b \sqrt{e d} e^{2} \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}\right)}{8 c d^{3}\left(c^{2} d-e\right)^{2}}-\frac{\mathrm{I} b c^{2} \operatorname{dilog}\left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d\left(c^{2} d-e\right)}+\frac{1}{4 d\left(c^{2} d-e\right)}\right) \mathrm{I} b c^{2}\right)
\end{aligned}
$$

$$
\sum_{-R 1=\operatorname{RootOf}\left(\left(c^{2} d-e\right) \quad Z^{4}+\left(2 c^{2} d+2 e\right) \quad Z^{2}+c^{2} d-e\right)}
$$

$$
\begin{aligned}
& \left.\left.\frac{\left(_R l^{2} c^{2} d-_{-} R l^{2} e+3 c^{2} d+e\right)\left(\operatorname{I} \arctan (c x) \ln \left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{_^{R 1}}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R^{2} c^{2} d-_{-} R 1^{2} e+c^{2} d+e}\right)\right)}{8}\right)\right) \\
& \left.-\frac{\mathrm{I} b \sqrt{e d} e \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}+\frac{3 \mathrm{I} b c \sqrt{e d} \operatorname{arctanh}\left(\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e\right.}{4 c \sqrt{e d}}\right)}{8 d^{2}\left(c^{2} d-e\right)}\right)
\end{aligned}
$$

$$
-\frac{b e \arctan (c x) \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d^{2}\left(c^{2} d-e\right)}-\frac{\mathrm{I} b e^{2} \ln \left(\frac{c^{2} d(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+\frac{2 c^{2} d(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-\frac{e(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+c^{2} d+\frac{2 e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-e\right)}{8 d^{2}\left(c^{2} d-e\right)^{2}}
$$

$$
-\frac{1}{4 d^{2}\left(c^{2} d-e\right)}(\mathrm{I} b e(
$$

$$
\begin{aligned}
& { }_{_} \sum \sum_{\text {RootOf }}\left(\left(c^{2} d-e\right) \quad Z^{4}+\left(2 c^{2} d+2 e\right) \quad Z^{2}+c^{2} d-e\right) \\
& \left.\left.\frac{\left({ }_{-} R 1^{2} c^{2} d-{ }_{-} R 1^{2} e+3 c^{2} d+e\right)\left(\operatorname{Iarctan}(c x) \ln \left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R 1}\right)\right)}{-R 1^{2} c^{2} d-{ }_{-} R 1^{2} e+c^{2} d+e}\right)\right)+\frac{R 1}{4 d\left(c^{2} d-e\right)}\left(\mathrm{I} b c^{2}(\right. \\
& \left.\sum_{_R I=\operatorname{RootOf}\left(\left(c^{2} d-e\right)\right.} _^{4}+\left(2 c^{2} d+2 e\right) _Z^{2}+c^{2} d-e\right) \\
& \left.\left.\frac{\left(_R l^{2} c^{2} d-_R 1^{2} e-c^{2} d+e\right)\left(\operatorname{Iarctan}(c x) \ln \left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R 2 l}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R}\right)\right)}{-R l^{2} c^{2} d-R l^{2} e+c^{2} d+e}\right)\right)-\frac{R 1}{4 d^{2}\left(c^{2} d-e\right)}(\mathrm{I} b e(\\
& \sum_{-R I=\operatorname{RootOf}\left(\left(c^{2} d-e\right)\right.} \sum_{\left.Z^{4}+\left(2 c^{2} d+2 e\right) _Z^{2}+c^{2} d-e\right)} \\
& \frac{\left(_R l^{2} c^{2} d-{ }_{-} R 1^{2} e-c^{2} d+e\right)\left(\operatorname{Iarctan}(c x) \ln \left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{-R 1}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R}\right)\right)}{\left._^{R 1^{2} c^{2} d-_R l^{2} e+c^{2} d+e}\right)}+\frac{b c^{2} \arctan (c x) \ln \left(1+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d\left(c^{2} d-e\right)} \\
& +\frac{\mathrm{I} b c^{2} \operatorname{dilog}\left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d\left(c^{2} d-e\right)}-\frac{\mathrm{I} b e \operatorname{dilog}\left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d^{2}\left(c^{2} d-e\right)} \\
& +\frac{\mathrm{I} b c^{2} e \ln \left(\frac{c^{2} d(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+\frac{2 c^{2} d(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-\frac{e(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+c^{2} d+\frac{2 e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-e\right)}{8 d\left(c^{2} d-e\right)^{2}}
\end{aligned}
$$

Problem 305: Result is not expressed in closed-form.

$$
\int \frac{a+b \arctan (c x)}{x^{3}\left(x^{2} e+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 419 leaves, 22 steps):

$$
\left.\begin{array}{l}
-\frac{b c}{2 d^{2} x}-\frac{b c^{2} \arctan (c x)}{2 d^{2}}+\frac{b c^{2} e \arctan (c x)}{2 d^{2}\left(c^{2} d-e\right)}+\frac{-a-b \arctan (c x)}{2 d^{2} x^{2}}-\frac{e(a+b \arctan (c x))}{2 d^{2}\left(x^{2} e+d\right)}-\frac{b c e^{3 / 2} \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right)}{2 d^{5 / 2}\left(c^{2} d-e\right)}-\frac{2 a e \ln (x)}{d^{3}} \\
-\frac{2 e(a+b \arctan (c x)) \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}}+\frac{e(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{d^{3}} \\
+\frac{e(a+b \arctan (c x)) \ln \left(\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{d^{3}}-\frac{\mathrm{I} b e \operatorname{polylog}(2,-\mathrm{I} c x)}{d^{3}}+\frac{\mathrm{I} b e \operatorname{polylog}(2, \mathrm{I} c x)}{d^{3}}+\frac{\mathrm{I} b e \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{d^{3}} \\
- \\
\quad \mathrm{I} b e \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right) \\
2 d^{3}
\end{array} \frac{\mathrm{I} b e \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{2 d^{3}}\right) .
$$

Result(type ?, 2276 leaves): Display of huge result suppressed!
Problem 306: Result is not expressed in closed-form.

$$
\int \frac{a+b \arctan (c x)}{\left(x^{2} e+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 611 leaves, 24 steps):
$\frac{x(a+b \arctan (c x))}{2 d\left(x^{2} e+d\right)}-\frac{b c \ln \left(c^{2} x^{2}+1\right)}{4 d\left(c^{2} d-e\right)}+\frac{b c \ln \left(x^{2} e+d\right)}{4 d\left(c^{2} d-e\right)}+\frac{(a+b \arctan (c x)) \arctan \left(\frac{x \sqrt{e}}{\sqrt{d}}\right)}{2 d^{3 / 2} \sqrt{e}}-\frac{\mathrm{I} b c \ln \left(-\frac{\left(1+x \sqrt{-c^{2}}\right) \sqrt{e}}{\left.\mathrm{I} \sqrt{-c^{2}} \sqrt{d}-\sqrt{e}\right) \ln \left(1-\frac{\mathrm{I} x \sqrt{e}}{\sqrt{d}}\right)}\right.}{8 d^{3} / 2 \sqrt{-c^{2}} \sqrt{e}}$

$$
+\frac{\mathrm{I} b c \ln \left(\frac{\left(1-x \sqrt{-c^{2}}\right) \sqrt{e}}{\mathrm{I} \sqrt{-c^{2}} \sqrt{d}+\sqrt{e}}\right) \ln \left(1-\frac{\mathrm{I} x \sqrt{e}}{\sqrt{d}}\right)}{8 d^{3 / 2} \sqrt{-c^{2}} \sqrt{e}}-\frac{\mathrm{I} b c \ln \left(-\frac{\left(1-x \sqrt{-c^{2}}\right) \sqrt{e}}{\mathrm{I} \sqrt{-c^{2}} \sqrt{d}-\sqrt{e}}\right) \ln \left(1+\frac{\mathrm{I} x \sqrt{e}}{\sqrt{d}}\right)}{8 d^{3 / 2} \sqrt{-c^{2}} \sqrt{e}}
$$

$$
+\frac{\mathrm{I} b c \ln \left(\frac{\left(1+x \sqrt{-c^{2}}\right) \sqrt{e}}{\mathrm{I} \sqrt{-c^{2}} \sqrt{d}+\sqrt{e}}\right) \ln \left(1+\frac{\mathrm{I} x \sqrt{e}}{\sqrt{d}}\right)}{8 d^{3 / 2} \sqrt{-c^{2}} \sqrt{e}}+\frac{\mathrm{I} b c \operatorname{polylog}\left(2, \frac{\sqrt{-c^{2}}(\sqrt{d}-\mathrm{I} x \sqrt{e})}{\sqrt{-c^{2}} \sqrt{d}-\mathrm{I} \sqrt{e}}\right)}{8 d^{3 / 2} \sqrt{-c^{2}} \sqrt{e}}-\frac{\mathrm{I} b c \operatorname{polylog}\left(2, \frac{\sqrt{-c^{2}}(\sqrt{d}-\mathrm{I} x \sqrt{e})}{\left.\sqrt{-c^{2}} \sqrt{d}+\mathrm{I} \sqrt{e}\right)}\right.}{8 d^{3 / 2} \sqrt{-c^{2}} \sqrt{e}}
$$

$$
+\frac{\mathrm{I} b c \text { polylog }\left(2, \frac{\sqrt{-c^{2}}(\sqrt{d}+\mathrm{I} x \sqrt{e})}{\sqrt{-c^{2}} \sqrt{d}-\mathrm{I} \sqrt{e}}\right)}{\mathrm{I} b c \text { polylog }\left(2, \frac{\sqrt{-c^{2}}(\sqrt{d}+\mathrm{I} x \sqrt{e})}{\sqrt{-c^{2}} \sqrt{d}+\mathrm{I} \sqrt{e}}\right)}
$$

$$
8 d^{3} / 2 \sqrt{-c^{2}} \sqrt{e} \quad 8 d^{3} / 2 \sqrt{-c^{2}} \sqrt{e}
$$

Result(type 7, 1129 leaves):

$$
\begin{aligned}
& \frac{c^{2} a x}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \arctan \left(\frac{x e}{\sqrt{e d}}\right)}{2 d \sqrt{e d}}+\frac{\mathrm{I} c^{3} b \arctan (c x) x^{2} e}{2 d\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{c^{4} b \arctan (c x) x}{2\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)}-\frac{c^{2} b \arctan (c x) x e}{2 d\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)} \\
& +\frac{\mathrm{I} c^{3} b \arctan (c x)}{2\left(c^{2} d-e\right)\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{c^{3} b \ln \left(\frac{c^{2} d(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+\frac{2 c^{2} d(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-\frac{e(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+c^{2} d+\frac{2 e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-e\right)}{(1)} \\
& -\frac{c^{4} b \sqrt{e d} \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}\right)}{4 e\left(c^{2} d-e\right)^{2}}-\frac{c^{3} b \ln \left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{\left(c^{2} d-e\right)^{2}} \\
& +\frac{b \sqrt{e d} \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}\right)}{4 d^{2}\left(c^{2} d-e\right)}+\frac{c^{2} b \sqrt{e d} \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}\right)}{4 e d\left(c^{2} d-e\right)} \\
& -\frac{c b e \ln \left(\frac{c^{2} d(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+\frac{2 c^{2} d(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-\frac{e(1+\mathrm{I} c x)^{4}}{\left(c^{2} x^{2}+1\right)^{2}}+c^{2} d+\frac{2 e(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-e\right)}{4} \\
& 4 d\left(c^{2} d-e\right)^{2} \\
& +\frac{b \sqrt{e d} e \operatorname{arctanh}\left(\frac{\frac{\left(2 c^{2} d-2 e\right)(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}+2 c^{2} d+2 e}{4 c \sqrt{e d}}\right)}{4 d^{2}\left(c^{2} d-e\right)^{2}}+\frac{c b e \ln \left(\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)}{d\left(c^{2} d-e\right)^{2}} \\
& +\frac{c b e\left(\sum_{R 1=\operatorname{RootOf}\left(\left(c^{2} d-e\right)\right.} Z^{4}+\left(2 c^{2} d+2 e\right) \quad Z^{2}+c^{2} d-e\right)}{\left.\frac{\mathrm{I} \arctan (c x) \ln \left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}}{R 1}\right)}{2 d\left(c^{2} d-e\right)}\right)}
\end{aligned}
$$

[^2]$$
\int x^{3} \sqrt{x^{2} e+d}(a+b \arctan (c x)) d x
$$

Optimal(type 3, 191 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{b x\left(x^{2} e+d\right)^{3 / 2}}{20 c e}-\frac{d\left(x^{2} e+d\right)^{3 / 2}(a+b \arctan (c x))}{3 e^{2}}+\frac{\left(x^{2} e+d\right)^{5 / 2}(a+b \arctan (c x))}{5 e^{2}}+\frac{b\left(c^{2} d-e\right)^{3 / 2}\left(2 c^{2} d+3 e\right) \arctan \left(\frac{x \sqrt{c^{2} d-e}}{\sqrt{x^{2} e+d}}\right)}{15 c^{5} e^{2}} \\
& +\frac{b\left(15 c^{4} d^{2}+20 c^{2} d e-24 e^{2}\right) \operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{x^{2} e+d}}\right)}{120 c^{5} e^{3 / 2}}-\frac{b\left(c^{2} d-12 e\right) x \sqrt{x^{2} e+d}}{120 c^{3} e}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int x^{3} \sqrt{x^{2} e+d}(a+b \arctan (c x)) \mathrm{d} x
$$

Problem 310: Unable to integrate problem.

$$
\int \frac{\sqrt{x^{2} e+d}(a+b \arctan (c x))}{x^{6}} \mathrm{~d} x
$$

Optimal(type 3, 192 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{b c\left(x^{2} e+d\right)^{3 / 2}}{20 d x^{4}}-\frac{\left(x^{2} e+d\right)^{3 / 2}(a+b \arctan (c x))}{5 d x^{5}}+\frac{2 e\left(x^{2} e+d\right)^{3 / 2}(a+b \arctan (c x))}{15 d^{2} x^{3}}-\frac{b c\left(24 c^{4} d^{2}-20 c^{2} d e-15 e^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{x^{2} e+d}}{\sqrt{d}}\right)}{120 d^{3 / 2}} \\
& +\frac{b\left(c^{2} d-e\right)^{3 / 2}\left(3 c^{2} d+2 e\right) \operatorname{arctanh}\left(\frac{c \sqrt{x^{2} e+d}}{\sqrt{c^{2} d-e}}\right)}{15 d^{2}}+\frac{b c\left(12 c^{2} d-e\right) \sqrt{x^{2} e+d}}{120 d x^{2}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\sqrt{x^{2} e+d}(a+b \arctan (c x))}{x^{6}} \mathrm{~d} x
$$

Problem 315: Unable to integrate problem.

$$
\int \frac{x(a+b \arctan (c x))}{\sqrt{x^{2} e+d}} \mathrm{~d} x
$$

Optimal(type 3, 89 leaves, 6 steps):

$$
-\frac{b \arctan \left(\frac{x \sqrt{c^{2} d-e}}{\sqrt{x^{2} e+d}}\right) \sqrt{c^{2} d-e}}{c e}-\frac{b \operatorname{arctanh}\left(\frac{x \sqrt{e}}{\sqrt{x^{2} e+d}}\right)}{c \sqrt{e}}+\frac{(a+b \arctan (c x)) \sqrt{x^{2} e+d}}{e}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x(a+b \arctan (c x))}{\sqrt{x^{2} e+d}} \mathrm{~d} x
$$

Problem 318: Unable to integrate problem.

$$
\int \frac{x(a+b \arctan (c x))}{\left(x^{2} e+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 3 steps):

$$
\frac{b c \arctan \left(\frac{x \sqrt{c^{2} d-e}}{\sqrt{x^{2} e+d}}\right)}{e \sqrt{c^{2} d-e}}+\frac{-a-b \arctan (c x)}{e \sqrt{x^{2} e+d}}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x(a+b \arctan (c x))}{\left(x^{2} e+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 320: Unable to integrate problem.

$$
\int \frac{x^{2}(a+b \arctan (c x))}{\left(x^{2} e+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 93 leaves, 5 steps):

$$
\frac{x^{3}(a+b \arctan (c x))}{3 d\left(x^{2} e+d\right)^{3 / 2}}-\frac{b \operatorname{arctanh}\left(\frac{c \sqrt{x^{2} e+d}}{\sqrt{c^{2} d-e}}\right)}{3 d\left(c^{2} d-e\right)^{3 / 2}}+\frac{b c}{3\left(c^{2} d-e\right) e \sqrt{x^{2} e+d}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{2}(a+b \arctan (c x))}{\left(x^{2} e+d\right)^{5 / 2}} \mathrm{~d} x
$$

$$
\int \frac{a+b \arctan (c x)}{\left(x^{2} e+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 124 leaves, 7 steps):

$$
\frac{x(a+b \arctan (c x))}{3 d\left(x^{2} e+d\right)^{3 / 2}}+\frac{b\left(3 c^{2} d-2 e\right) \operatorname{arctanh}\left(\frac{c \sqrt{x^{2} e+d}}{\sqrt{c^{2} d-e}}\right)}{3 d^{2}\left(c^{2} d-e\right)^{3 / 2}}-\frac{b c}{3 d\left(c^{2} d-e\right) \sqrt{x^{2} e+d}}+\frac{2 x(a+b \arctan (c x))}{3 d^{2} \sqrt{x^{2} e+d}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{a+b \arctan (c x)}{\left(x^{2} e+d\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 323: Unable to integrate problem.

$$
\int x^{m}\left(x^{2} e+d\right)^{3}(a+b \arctan (c x)) \mathrm{d} x
$$

Optimal(type 5, 376 leaves, 4 steps):
$-\frac{b e\left(e^{2}\left(m^{2}+8 m+15\right)-3 c^{2} d e\left(m^{2}+10 m+21\right)+3 c^{4} d^{2}\left(m^{2}+12 m+35\right)\right) x^{2}+m}{c^{5}(2+m)(3+m)(5+m)(7+m)}+\frac{b e^{2}\left(e(5+m)-3 c^{2} d(7+m)\right) x^{4+m}}{c^{3}(4+m)(5+m)(7+m)}-\frac{b e^{3} x^{6}+m}{c(6+m)(7+m)}$

$$
+\frac{d^{3} x^{1+m}(a+b \arctan (c x))}{1+m}+\frac{3 d^{2} e x^{3+m}(a+b \arctan (c x))}{3+m}+\frac{3 d e^{2} x^{5+m}(a+b \arctan (c x))}{5+m}+\frac{e^{3} x^{7+m}(a+b \arctan (c x))}{7+m}
$$

$$
+\frac{1}{c^{5}(1+m)(2+m)(3+m)(5+m)(7+m)}\left(b \left(e^{3}\left(m^{3}+9 m^{2}+23 m+15\right)-3 c^{2} d e^{2}\left(m^{3}+11 m^{2}+31 m+21\right)+3 c^{4} d^{2} e\left(m^{3}+13 m^{2}+47 m\right.\right.\right.
$$

$$
\left.\left.+35)-c^{6} d^{3}\left(m^{3}+15 m^{2}+71 m+105\right)\right) x^{2+m} \operatorname{hypergeom}\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],-c^{2} x^{2}\right)\right)
$$

Result(type 8, 23 leaves):

$$
\int x^{m}\left(x^{2} e+d\right)^{3}(a+b \arctan (c x)) \mathrm{d} x
$$

Problem 324: Unable to integrate problem.

$$
\int x^{m}\left(x^{2} e+d\right)(a+b \arctan (c x)) d x
$$

Optimal(type 5, 120 leaves, 3 steps):

Result (type 8, 21 leaves):

$$
\int x^{m}\left(x^{2} e+d\right)(a+b \arctan (c x)) d x
$$

Problem 328: Result more than twice size of optimal antiderivative.
$\int \frac{\left(x^{2} e+d\right)(a+b \arctan (c x))^{2}}{x} \mathrm{~d} x$
Optimal(type 4, 200 leaves, 14 steps):
$-\frac{a b e x}{c}-\frac{b^{2} e x \arctan (c x)}{c}+\frac{e(a+b \arctan (c x))^{2}}{2 c^{2}}+\frac{e x^{2}(a+b \arctan (c x))^{2}}{2}-2 d(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)+\frac{b^{2} e \ln \left(c^{2} x^{2}+1\right)}{2 c^{2}}$
$-\mathrm{I} b d(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)+\mathrm{I} b d(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)-\frac{b^{2} d \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2}$ $+\frac{b^{2} d \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2}$

Result(type 4, 1283 leaves):
$2 a b \arctan (c x) d \ln (c x)+\mathrm{I} a b d \ln (c x) \ln (1+\mathrm{I} c x)-\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}$

$$
\begin{aligned}
& -\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2} \\
& +\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2} \\
& +\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}-\frac{a b e x}{c}-\frac{b^{2} e x \arctan (c x)}{c}+\frac{b^{2} \arctan (c x)^{2} x^{2} e}{2} \\
& +b^{2} \arctan (c x)^{2} d \ln (c x)+\frac{b^{2} e \arctan (c x)^{2}}{2 c^{2}}-\frac{b^{2} e \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c^{2}}-b^{2} d \arctan (c x)^{2} \ln \left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)+b^{2} d \arctan (c x)^{2} \ln (1 \\
& \left.+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+b^{2} d \arctan (c x)^{2} \ln \left(1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{a^{2} x^{2} e}{2}+2 b^{2} d \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+2 b^{2} d \operatorname{poly} \log \left(3, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right) \\
& -\frac{b^{2} d \operatorname{poly} \log \left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2}+a^{2} d \ln (c x)-\mathrm{I} a b d \ln (c x) \ln (1-\mathrm{I} c x)+\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2} \\
& -\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+\frac{\mathrm{I} b^{2} d \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}+\frac{a b \arctan (c x) e}{c^{2}}+\mathrm{I} a b d \operatorname{dilog}(1+\mathrm{I} c x) \\
& +a b \arctan (c x) x^{2} e-\mathrm{I} a b d \operatorname{dilog}(1-\mathrm{I} c x)+\mathrm{I} b^{2} d \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)+\frac{\mathrm{I} b^{2} \arctan (c x) e}{c^{2}}-2 \mathrm{I} b^{2} d \arctan (c x) \operatorname{polylog}(2, \\
& \left.-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{\mathrm{I} b^{2} d \pi \arctan (c x)^{2}}{2}-2 \mathrm{I} b^{2} d \arctan (c x) \operatorname{poly} \log \left(2, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)
\end{aligned}
$$

Problem 329: Result more than twice size of optimal antiderivative.

$$
\int\left(x^{2} e+d\right)^{2}(a+b \arctan (c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 398 leaves, 30 steps):

$$
\begin{aligned}
& \frac{2 b^{2} d e x}{3 c^{2}}-\frac{3 b^{2} e^{2} x}{10 c^{4}}+\frac{b^{2} e^{2} x^{3}}{30 c^{2}}-\frac{2 b^{2} d e \arctan (c x)}{3 c^{3}}+\frac{3 b^{2} e^{2} \arctan (c x)}{10 c^{5}}-\frac{2 b d e x^{2}(a+b \arctan (c x))}{3 c}+\frac{b e^{2} x^{2}(a+b \arctan (c x))}{5 c^{3}} \\
& \quad-\frac{b e^{2} x^{4}(a+b \arctan (c x))}{10 c}+\frac{\mathrm{I} d^{2}(a+b \arctan (c x))^{2}}{c}+\frac{\mathrm{I} b^{2} e^{2} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{5 c^{5}}+\frac{\mathrm{I} b^{2} d^{2} \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c}+d^{2} x(a
\end{aligned}
$$

$$
\begin{aligned}
& +b \arctan (c x))^{2}+\frac{2 d e x^{3}(a+b \arctan (c x))^{2}}{3}+\frac{e^{2} x^{5}(a+b \arctan (c x))^{2}}{5}+\frac{2 b d^{2}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c} \\
& -\frac{4 b d e(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}+\frac{2 b e^{2}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{5 c^{5}}-\frac{2 \mathrm{I} d e(a+b \arctan (c x))^{2}}{3 c^{3}}+\frac{\mathrm{I} e^{2}(a+b \arctan (c x))^{2}}{5 c^{5}} \\
& - \\
& -\frac{2 \mathrm{I} b^{2} d e \operatorname{poly} \log \left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}
\end{aligned}
$$

Result(type 4, 1004 leaves):
$-\frac{b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) d^{2}}{c}-\frac{a b \ln \left(c^{2} x^{2}+1\right) d^{2}}{c}+2 a b \arctan (c x) x d^{2}+\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2} d^{2}}{4 c}+\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) d^{2}}{2 c}-\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2} d^{2}}{4 c}$

$$
-\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) d^{2}}{2 c}+\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2 c}+\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln (c x-\mathrm{I}) d^{2}}{2 c}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2 c}+a^{2} x d^{2}
$$

$$
+\frac{2 b^{2} d e x}{3 c^{2}}-\frac{2 b^{2} d e \arctan (c x)}{3 c^{3}}-\frac{3 b^{2} e^{2} x}{10 c^{4}}+\frac{b^{2} e^{2} x^{3}}{30 c^{2}}+\frac{3 b^{2} e^{2} \arctan (c x)}{10 c^{5}}-\frac{a b \ln \left(c^{2} x^{2}+1\right) e^{2}}{5 c^{5}}-\frac{2 a b d e x^{2}}{3 c}-\frac{2 b^{2} \arctan (c x) d e x^{2}}{3 c}
$$

$$
+\frac{2 b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) d e}{3 c^{3}}+\frac{2 a b \ln \left(c^{2} x^{2}+1\right) d e}{3 c^{3}}+\frac{4 a b \arctan (c x) d e x^{3}}{3}+\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I})^{2}}{6 c^{3}}-\frac{\mathrm{I} b^{2} e^{2} \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{10 c^{5}}
$$

$$
+\frac{\mathrm{I} b^{2} e^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{10 c^{5}}+\frac{\mathrm{I} b^{2} e^{2} \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{10 c^{5}}-\frac{\mathrm{I} b^{2} e^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{10 c^{5}}+\frac{\mathrm{I} b^{2} d e \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{3 c^{3}}
$$

$$
-\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I})^{2}}{6 c^{3}}-\frac{\mathrm{I} b^{2} d e \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{3 c^{3}}
$$

$$
+\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}+\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{3 c^{3}}-\frac{b^{2} \arctan (c x) e^{2} x^{4}}{10 c}+\frac{\mathrm{I} b^{2} e^{2} \ln (c x-\mathrm{I})^{2}}{20 c^{5}}+\frac{\mathrm{I} b^{2} e^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{10 c^{5}}
$$

$$
-\frac{\mathrm{I} b^{2} e^{2} \ln (c x+\mathrm{I})^{2}}{20 c^{5}}-\frac{\mathrm{I} b^{2} e^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{10 c^{5}}+\frac{a b e^{2} x^{2}}{5 c^{3}}-\frac{a b e^{2} x^{4}}{10 c}+\frac{2 a b \arctan (c x) e^{2} x^{5}}{5}+\frac{2 b^{2} \arctan (c x)^{2} d e x^{3}}{3}+\frac{b^{2} \arctan (c x) x^{2} e^{2}}{5 c^{3}}
$$

$$
+b^{2} \arctan (c x)^{2} x d^{2}-\frac{\mathrm{I} b^{2} \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) \ln (c x+\mathrm{I}) d^{2}}{2 c}+\frac{2 a^{2} d e x^{3}}{3}+\frac{b^{2} \arctan (c x)^{2} e^{2} x^{5}}{5}-\frac{b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) e^{2}}{5 c^{5}}+\frac{a^{2} e^{2} x^{5}}{5}
$$

[^3]$$
\int \frac{\left(x^{2} e+d\right)^{2}(a+b \arctan (c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 330 leaves, 25 steps):

$$
\begin{aligned}
& -\frac{2 a b d e x}{c}+\frac{a b e^{2} x}{2 c^{3}}+\frac{b^{2} e^{2} x^{2}}{12 c^{2}}-\frac{2 b^{2} d e x \arctan (c x)}{c}+\frac{b^{2} e^{2} x \arctan (c x)}{2 c^{3}}-\frac{b e^{2} x^{3}(a+b \arctan (c x))}{6 c}+\frac{d e(a+b \arctan (c x))^{2}}{c^{2}} \\
& -\frac{e^{2}(a+b \arctan (c x))^{2}}{4 c^{4}}+d e x^{2}(a+b \arctan (c x))^{2}+\frac{e^{2} x^{4}(a+b \arctan (c x))^{2}}{4}-2 d^{2}(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right) \\
& +\frac{b^{2} d e \ln \left(c^{2} x^{2}+1\right)}{c^{2}}-\frac{b^{2} e^{2} \ln \left(c^{2} x^{2}+1\right)}{3 c^{4}}-\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)+\mathrm{I} b d^{2}(a+b \arctan (c x)) \operatorname{polylog}(2,-1 \\
& \left.+\frac{2}{1+\mathrm{I} c x}\right)-\frac{b^{2} d^{2} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2}+\frac{b^{2} d^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2}
\end{aligned}
$$

$$
\text { Result(type 4, } 1548 \text { leaves): }
$$

$$
\frac{b^{2} e \arctan (c x)^{2} d}{c^{2}}+b^{2} e \arctan (c x)^{2} x^{2} d-\frac{2 a b d e x}{c}-\frac{2 b^{2} d e x \arctan (c x)}{c}+\frac{2 a b e \arctan (c x) d}{c^{2}}+2 a b e \arctan (c x) x^{2} d+\frac{a b e^{2} x}{2 c^{3}}+\frac{b^{2} e^{2} x \arctan (c x)}{2 c^{3}}
$$

$$
+\frac{b^{2} e^{2} x^{2}}{12 c^{2}}+d^{2} b^{2} \arctan (c x)^{2} \ln \left(1-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+d^{2} b^{2} \arctan (c x)^{2} \ln (c x)-d^{2} b^{2} \arctan (c x)^{2} \ln \left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)+d^{2} b^{2} \arctan (c x)^{2} \ln (1
$$

$$
\left.+\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{a^{2} e^{2} x^{4}}{4}+\frac{2 \mathrm{I} b^{2} d e \arctan (c x)}{c^{2}}+\frac{b^{2} \arctan (c x)^{2} e^{2} x^{4}}{4}-\frac{b^{2} \arctan (c x)^{2} e^{2}}{4 c^{4}}+\frac{2 b^{2} e^{2} \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{3 c^{4}}
$$

$$
+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}
$$

$$
-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}
$$

$$
-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \arctan (c x)^{2}}{2}
$$

$$
-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+2 d^{2} a b \arctan (c x) \ln (c x)+\mathrm{I} d^{2} a b \operatorname{dilog}(1+\mathrm{I} c x)
$$

$-\mathrm{I} d^{2} a b \operatorname{dilog}(1-\mathrm{I} c x)+\mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)-2 \mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{polylog}\left(2,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)$
$-2 \mathrm{I} d^{2} b^{2} \arctan (c x) \operatorname{polylog}\left(2, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+\frac{\mathrm{I} d^{2} b^{2} \pi \arctan (c x)^{2}}{2}+a^{2} e x^{2} d-\frac{b^{2} \arctan (c x) x^{3} e^{2}}{6 c}-\frac{a b e^{2} x^{3}}{6 c}-\frac{2 b^{2} d e \ln \left(1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{c^{2}}$
$-\frac{2 \mathrm{I} b^{2} \arctan (c x) e^{2}}{3 c^{4}}-\frac{a b e^{2} \arctan (c x)}{2 c^{4}}+\frac{a b \arctan (c x) e^{2} x^{4}}{2}+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}$
$-\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{2} \arctan (c x)^{2}}{2}+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)^{3} \arctan (c x)^{2}}{2}+\mathrm{I} d^{2} a b \ln (c x) \ln (1+\mathrm{I} c x)$
$\left.-\mathrm{I} d^{2} a b \ln (c x) \ln (1-\mathrm{I} c x)+\frac{\mathrm{I} d^{2} b^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}-1\right)}{2}\right) \arctan (c x)^{2}}{1+\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}}\right)$
$-\frac{d^{2} b^{2} \text { polylog }\left(3,-\frac{(1+\mathrm{I} c x)^{2}}{c^{2} x^{2}+1}\right)}{2}+2 d^{2} b^{2} \operatorname{polylog}\left(3,-\frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+2 d^{2} b^{2} \operatorname{polylog}\left(3, \frac{1+\mathrm{I} c x}{\sqrt{c^{2} x^{2}+1}}\right)+d^{2} a^{2} \ln (c x)+\frac{b^{2} e^{2}}{12 c^{4}}$

Problem 331: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2} e+d\right)^{2}(a+b \arctan (c x))^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 317 leaves, 20 steps):
$\frac{b^{2} e^{2} x}{3 c^{2}}-\frac{b^{2} e^{2} \arctan (c x)}{3 c^{3}}-\frac{b e^{2} x^{2}(a+b \arctan (c x))}{3 c}-\mathrm{I} c d^{2}(a+b \arctan (c x))^{2}+\frac{2 \mathrm{I} d e(a+b \arctan (c x))^{2}}{c}-\frac{\mathrm{I} e^{2}(a+b \arctan (c x))^{2}}{3 c^{3}}$
$-\frac{d^{2}(a+b \arctan (c x))^{2}}{x}+2 d e x(a+b \arctan (c x))^{2}+\frac{e^{2} x^{3}(a+b \arctan (c x))^{2}}{3}+\frac{4 b d e(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{c}$
$-\frac{2 b e^{2}(a+b \arctan (c x)) \ln \left(\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}+2 b c d^{2}(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)-\mathrm{I} b^{2} c d^{2} \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)$
$+\frac{2 \mathrm{I} b^{2} d e \text { polylog }\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{c}-\frac{\mathrm{I} b^{2} e^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{3 c^{3}}$
Result(type 4, 996 leaves):
$-\frac{b^{2} e^{2} \arctan (c x) x^{2}}{3 c}+\frac{2 a b e^{2} \arctan (c x) x^{3}}{3}+\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I})^{2} e^{2}}{12 c^{3}}+\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) e^{2}}{6 c^{3}}-\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I})^{2} e^{2}}{12 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) e^{2}}{6 c^{3}}$
$-\frac{a b e^{2} x^{2}}{3 c}+\frac{b^{2} e^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}+\frac{a b e^{2} \ln \left(c^{2} x^{2}+1\right)}{3 c^{3}}-\frac{2 d^{2} a b \arctan (c x)}{x}+2 c d^{2} a b \ln (c x)-\frac{d^{2} a^{2}}{x}+\frac{a^{2} e^{2} x^{3}}{3}+\mathrm{I} c b^{2} d^{2} \ln (c x) \ln (1$
$+\mathrm{I} c x)-\frac{2 b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) d e}{c}-\frac{2 a b \ln \left(c^{2} x^{2}+1\right) d e}{c}+\frac{\mathrm{I} b^{2} d e \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{c}+4 a b d e \arctan (c x) x$
$-\frac{\mathrm{I} b^{2} d e \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{c}+\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I})^{2}}{2 c}-\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I})^{2}}{2 c}-\mathrm{I} c b^{2} d^{2} \ln (c x) \ln (1-\mathrm{I} c x)+\frac{\mathrm{I} c b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln (c x-\mathrm{I}) d^{2}}{2}$
$-\frac{\mathrm{I} c b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2}-\frac{\mathrm{I} c b^{2} \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) \ln (c x+\mathrm{I}) d^{2}}{2}+\frac{\mathrm{I} c b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) d^{2}}{2}+2 b^{2} \arctan (c x)^{2} x d e+\mathrm{I} c b^{2} d^{2} \operatorname{dilog}(1$
$+\mathrm{I} c x)-c a b \ln \left(c^{2} x^{2}+1\right) d^{2}-c b^{2} \arctan (c x) \ln \left(c^{2} x^{2}+1\right) d^{2}+2 c b^{2} \arctan (c x) d^{2} \ln (c x)-\mathrm{I} c b^{2} d^{2} \operatorname{dilog}(1-\mathrm{I} c x)+\frac{\mathrm{I} c b^{2} \ln (c x-\mathrm{I})^{2} d^{2}}{4}$
$+\frac{\mathrm{I} c b^{2} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) d^{2}}{2}-\frac{\mathrm{I} c b^{2} \ln (c x+\mathrm{I})^{2} d^{2}}{4}-\frac{\mathrm{I} c b^{2} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) d^{2}}{2}+\frac{b^{2} e^{2} \arctan (c x)^{2} x^{3}}{3}-\frac{d^{2} b^{2} \arctan (c x)^{2}}{x}+\frac{b^{2} e^{2} x}{3 c^{2}}$
$-\frac{b^{2} e^{2} \arctan (c x)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right) \ln (c x-\mathrm{I}) e^{2}}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) e^{2}}{6 c^{3}}+\frac{\mathrm{I} b^{2} \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right) \ln (c x+\mathrm{I}) e^{2}}{6 c^{3}}$
$-\frac{\mathrm{I} b^{2} \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right) e^{2}}{6 c^{3}}+\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{c}+\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(c x+\mathrm{I})\right)}{c}-\frac{\mathrm{I} b^{2} d e \ln (c x-\mathrm{I}) \ln \left(c^{2} x^{2}+1\right)}{c}$
$-\frac{\mathrm{I} b^{2} d e \ln (c x+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(c x-\mathrm{I})\right)}{c}+2 a^{2} x d e$

Problem 332: Unable to integrate problem.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x\left(x^{2} e+d\right)} \mathrm{d} x
$$

Optimal(type 4, 546 leaves, 12 steps):
$-\frac{2(a+b \arctan (c x))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I} c x}\right)}{d}+\frac{(a+b \arctan (c x))^{2} \ln \left(\frac{2}{1-\mathrm{I} c x}\right)}{d}-\frac{(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{2 d}$

$$
\begin{aligned}
& -\frac{(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{2 d}-\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I} c x}\right)}{d} \\
& -\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I} c x}\right)}{d}+\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I} c x}\right)}{d} \\
& +\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{2 d}+\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{2 d} \\
& +\frac{b^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1-\mathrm{I} c x}\right)}{2 d}-\frac{b^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I} c x}\right)}{2 d}+\frac{b^{2} \operatorname{poly} \log \left(3,-1+\frac{2}{1+\mathrm{I} c x}\right)}{2 d} \\
& -\frac{b^{2} \operatorname{poly} \log \left(3,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right)}{4 d}-\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right)}{4 d}
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int \frac{(a+b \arctan (c x))^{2}}{x\left(x^{2} e+d\right)} \mathrm{d} x
$$

Problem 333: Unable to integrate problem.

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{2}\left(x^{2} e+d\right)} \mathrm{d} x
$$

Optimal(type 4, 451 leaves, 9 steps):
$-\frac{\mathrm{I} c(a+b \arctan (c x))^{2}}{d}-\frac{(a+b \arctan (c x))^{2}}{d x}+\frac{2 b c(a+b \arctan (c x)) \ln \left(2-\frac{2}{1-\mathrm{I} c x}\right)}{d}-\frac{\mathrm{I} b^{2} c \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I} c x}\right)}{d}$

$$
+\frac{(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{(a+b \arctan (c x))^{2} \ln \left(\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{2(-d)^{3 / 2}}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{2(-d)^{3 / 2}} \\
& +\frac{\mathrm{I} b(a+b \arctan (c x)) \operatorname{polylog}\left(2,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{2(-d)^{3 / 2}}+\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2 c(\sqrt{-d}-x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}-\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{4(-d)^{3 / 2}} \\
& -\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2 c(\sqrt{-d}+x \sqrt{e})}{(1-\mathrm{I} c x)(c \sqrt{-d}+\mathrm{I} \sqrt{e})}\right) \sqrt{e}}{4(-d)^{3 / 2}}
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int \frac{(a+b \arctan (c x))^{2}}{x^{2}\left(x^{2} e+d\right)} \mathrm{d} x
$$

Problem 334: Result more than twice size of optimal antiderivative. $\int \arctan (x) \ln \left(x^{2}+1\right) d x$
Optimal(type 3, 36 leaves, 8 steps):

$$
-2 x \arctan (x)+\arctan (x)^{2}+\ln \left(x^{2}+1\right)+x \arctan (x) \ln \left(x^{2}+1\right)-\frac{\ln \left(x^{2}+1\right)^{2}}{4}
$$

Result(type 3, 1912 leaves):
$2 I \arctan (x)+\frac{\operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \arctan (x) \pi}{2}$

$$
\begin{aligned}
& \mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{3} \\
- & \frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{3}}{2} \\
- & \frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{3}}{2}-\pi \arctan (x) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{2} \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right)-2 x \arctan (x) \\
& \operatorname{cosgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{3} \arctan (x) \pi \\
2 & \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{3} \arctan (x) \pi \\
2 & -2 \arctan (x) \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) x-2 \mathrm{I} \ln (2) \arctan (x)
\end{aligned}
$$

$-\ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}+\frac{\pi \arctan (x) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{3}}{2}+2 \ln (2) \arctan (x) x+\mathrm{I} \ln (1$
$\left.+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}$
$-\underline{\operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \arctan (x) \pi}$
2
$+\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2} x-\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) x}{2}$
$+\frac{I \pi \arctan (x) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right) x}{2}-I \pi \arctan (x) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{2} x$
$+\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2} x}{2}$
$+\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) x}{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)}{ }_{2}$
$+\frac{\pi \arctan (x) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right)^{2}}{2}+2\left(-I \arctan (x)+x \arctan (x)+\ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right) \ln \left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)$
$-\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{3} x}{2}+\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{3} x}{2}$

$$
\begin{aligned}
& -\frac{\operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right)^{2} \arctan (x) \pi}{2}+\operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right) \arctan (x) \pi \\
& \\
& \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \arctan (x) \pi \\
& +
\end{aligned}
$$

$$
-\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)}{2}-\frac{\mathrm{I} \pi \arctan (x) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{3} x}{2}
$$

$$
+\frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)}{2}
$$

$$
+\frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2}}{2}-\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}(\mathrm{I}(1
$$

$$
\left.\left.+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)\right) \operatorname{csgn}\left(I\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}\right)^{2}-\frac{\mathrm{In}\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)}{\sqrt{x^{2}+1}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)}{2}
$$

$$
+\frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right) \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(1+\mathrm{I} x)^{2}}{\left(x^{2}+1\right)\left(1+\frac{(1+\mathrm{I} x)^{2}}{x^{2}+1}\right)^{2}}\right)^{2}}{2}
$$

Problem 335: Result more than twice size of optimal antiderivative.

$$
\int \frac{\arctan (x) \ln \left(x^{2}+1\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 157 leaves, 12 steps):
$-\frac{\mathrm{I} \ln (1+\mathrm{I} x)^{2} \ln (-\mathrm{I} x)}{2}+\frac{\mathrm{I} \ln (1-\mathrm{I} x)^{2} \ln (\mathrm{I} x)}{2}+\mathrm{I} \ln (1-\mathrm{I} x) \operatorname{poly} \log (2,1-\mathrm{I} x)-\mathrm{I} \ln (1+\mathrm{I} x) \operatorname{poly} \log (2,1+\mathrm{I} x)$
$-\frac{\mathrm{I}\left(\ln (1-\mathrm{I} x)+\ln (1+\mathrm{I} x)-\ln \left(x^{2}+1\right)\right) \operatorname{polylog}(2,-\mathrm{I} x)}{2}+\frac{\mathrm{I}\left(\ln (1-\mathrm{I} x)+\ln (1+\mathrm{I} x)-\ln \left(x^{2}+1\right)\right) \operatorname{poly} \log (2, \mathrm{I} x)}{2}-\mathrm{Ipoly} \log (3,1-\mathrm{I} x)$

$$
+\mathrm{I} \text { polylog }(3,1+\mathrm{I} x)
$$

Result(type ?, 5236 leaves): Display of huge result suppressed!
Problem 336: Unable to integrate problem.

$$
\int \frac{(a+b \arctan (c x))\left(d+e \ln \left(c^{2} x^{2}+1\right)\right)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 138 leaves, 10 steps):
$b c^{2} e \arctan (c x)+a c^{2} e \ln (x)-\frac{a c^{2} e \ln \left(c^{2} x^{2}+1\right)}{2}-\frac{b c\left(d+e \ln \left(c^{2} x^{2}+1\right)\right)}{2 x}-\frac{b c^{2} \arctan (c x)\left(d+e \ln \left(c^{2} x^{2}+1\right)\right)}{2}$

$$
-\frac{(a+b \arctan (c x))\left(d+e \ln \left(c^{2} x^{2}+1\right)\right)}{2 x^{2}}+\frac{\mathrm{I} b c^{2} e \operatorname{poly} \log (2,-\mathrm{I} c x)}{2}-\frac{\mathrm{I} b c^{2} e \operatorname{polylog}(2, \mathrm{I} c x)}{2}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(a+b \arctan (c x))\left(d+e \ln \left(c^{2} x^{2}+1\right)\right)}{x^{3}} \mathrm{~d} x
$$

Problem 337: Unable to integrate problem.

$$
\int \frac{(a+b \arctan (c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 528 leaves, 28 steps):
$-\frac{(a+b \arctan (c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x}+\frac{b c \ln \left(-\frac{g x^{2}}{f}\right)\left(d+e \ln \left(g x^{2}+f\right)\right)}{2}-\frac{b c \ln \left(-\frac{g\left(c^{2} x^{2}+1\right)}{f c^{2}-g}\right)\left(d+e \ln \left(g x^{2}+f\right)\right)}{2}$
$-\frac{b c e \text { polylog }\left(2, \frac{c^{2}\left(g x^{2}+f\right)}{f c^{2}-g}\right)}{2}+\frac{b c e \text { polylog}\left(2,1+\frac{g x^{2}}{f}\right)}{2}-\frac{\mathrm{I} b e \ln (1+\mathrm{I} c x) \ln \left(\frac{c(\sqrt{-f}-x \sqrt{g})}{c \sqrt{-f}-\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}$ $+\frac{\mathrm{I} b e \ln (1-\mathrm{I} c x) \ln \left(\frac{c(\sqrt{-f}-x \sqrt{g})}{c \sqrt{-f}+\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}-\frac{\mathrm{I} b e \ln (1-\mathrm{I} c x) \ln \left(\frac{c(\sqrt{-f}+x \sqrt{g})}{c \sqrt{-f}-\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}+\frac{\mathrm{I} b e \ln (1+\mathrm{I} c x) \ln \left(\frac{c(\sqrt{-f}+x \sqrt{g})}{c \sqrt{-f}+\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}$
$+\frac{\mathrm{I} b e \text { polylog }\left(2, \frac{(-c x+\mathrm{I}) \sqrt{g}}{c \sqrt{-f}+\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}+\frac{\mathrm{I} b e \operatorname{polylog}\left(2, \frac{(c x+\mathrm{I}) \sqrt{g}}{c \sqrt{-f}+\mathrm{I} \sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}-\frac{\mathrm{I} b e \operatorname{polylog}\left(2, \frac{(1-\mathrm{I} c x) \sqrt{g}}{\mathrm{I} c \sqrt{-f}+\sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}$
$-\frac{\mathrm{I} b e \operatorname{polylog}\left(2, \frac{(1+\mathrm{I} c x) \sqrt{g}}{\mathrm{I} c \sqrt{-f}+\sqrt{g}}\right) \sqrt{g}}{2 \sqrt{-f}}+\frac{2 a e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \sqrt{g}}{\sqrt{f}}$
Result(type 8, 26 leaves):

$$
\int \frac{(a+b \arctan (c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x^{2}} \mathrm{~d} x
$$

Test results for the 23 problems in " 5.3 .5 u (a+b arctan (c+d x))^p.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{3}(a+b \arctan (d x+c)) \mathrm{d} x
$$

Optimal(type 3, 64 leaves, 6 steps):

$$
\frac{b e^{3} x}{4}-\frac{b e^{3}(d x+c)^{3}}{12 d}-\frac{b e^{3} \arctan (d x+c)}{4 d}+\frac{e^{3}(d x+c)^{4}(a+b \arctan (d x+c))}{4 d}
$$

Result(type 3, 224 leaves):
$\frac{d^{3} x^{4} a e^{3}}{4}+d^{2} x^{3} a c e^{3}+\frac{3 d x^{2} a c^{2} e^{3}}{2}+x a c^{3} e^{3}+\frac{a c^{4} e^{3}}{4 d}+\frac{d^{3} \arctan (d x+c) x^{4} b e^{3}}{4}+d^{2} \arctan (d x+c) x^{3} b c e^{3}+\frac{3 d \arctan (d x+c) x^{2} b c^{2} e^{3}}{2}$
$+\arctan (d x+c) x b c^{3} e^{3}+\frac{\arctan (d x+c) b c^{4} e^{3}}{4 d}-\frac{d^{2} x^{3} b e^{3}}{12}-\frac{d x^{2} b c e^{3}}{4}-\frac{x b c^{2} e^{3}}{4}-\frac{b c^{3} e^{3}}{12 d}+\frac{b e^{3} x}{4}+\frac{b c e^{3}}{4 d}-\frac{b e^{3} \arctan (d x+c)}{4 d}$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)(a+b \arctan (d x+c)) \mathrm{d} x
$$

Optimal (type 3, 42 leaves, 5 steps):

$$
-\frac{b e x}{2}+\frac{b e \arctan (d x+c)}{2 d}+\frac{e(d x+c)^{2}(a+b \arctan (d x+c))}{2 d}
$$

Result(type 3, 91 leaves):

$$
\frac{a e x^{2} d}{2}+a c e x+\frac{c^{2} a e}{2 d}+\frac{d \arctan (d x+c) x^{2} b e}{2}+\arctan (d x+c) x b c e+\frac{\arctan (d x+c) b c^{2} e}{2 d}-\frac{b e x}{2}-\frac{b c e}{2 d}+\frac{b e \arctan (d x+c)}{2 d}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{3}(a+b \arctan (d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 3, 143 leaves, 13 steps):
$\frac{a b e^{3} x}{2}+\frac{b^{2} e^{3}(d x+c)^{2}}{12 d}+\frac{b^{2} e^{3}(d x+c) \arctan (d x+c)}{2 d}-\frac{b e^{3}(d x+c)^{3}(a+b \arctan (d x+c))}{6 d}-\frac{e^{3}(a+b \arctan (d x+c))^{2}}{4 d}$

$$
+\frac{e^{3}(d x+c)^{4}(a+b \arctan (d x+c))^{2}}{4 d}-\frac{b^{2} e^{3} \ln \left(1+(d x+c)^{2}\right)}{3 d}
$$

Result (type 3, 542 leaves):
$-\frac{x a b c^{2} e^{3}}{2}+\frac{a b e^{3} x}{2}+2 d^{2} \arctan (d x+c) x^{3} a b c e^{3}+3 d \arctan (d x+c) x^{2} a b c^{2} e^{3}-\frac{d x^{2} a b c e^{3}}{2}+2 \arctan (d x+c) x a b c^{3} e^{3}+d^{2} \arctan (d x$
$+c)^{2} x^{3} b^{2} c e^{3}+\frac{3 d \arctan (d x+c)^{2} x^{2} b^{2} c^{2} e^{3}}{2}-\frac{d \arctan (d x+c) x^{2} b^{2} c e^{3}}{2}+\frac{d^{3} \arctan (d x+c) x^{4} a b e^{3}}{2}+\frac{\arctan (d x+c) a b c^{4} e^{3}}{2 d}-\frac{a b c^{3} e^{3}}{6 d}$
$+\frac{a b c e^{3}}{2 d}+d^{2} x^{3} a^{2} c e^{3}+\frac{3 d x^{2} a^{2} c^{2} e^{3}}{2}-\frac{d^{2} x^{3} a b e^{3}}{6}+\arctan (d x+c)^{2} x b^{2} c^{3} e^{3}-\frac{\arctan (d x+c) x b^{2} c^{2} e^{3}}{2}+\frac{d^{3} \arctan (d x+c)^{2} x^{4} b^{2} e^{3}}{4}$
$-\frac{d^{2} \arctan (d x+c) x^{3} b^{2} e^{3}}{6}-\frac{e^{3} a b \arctan (d x+c)}{2 d}+\frac{\arctan (d x+c)^{2} b^{2} c^{4} e^{3}}{4 d}-\frac{\arctan (d x+c) b^{2} c^{3} e^{3}}{6 d}+\frac{\arctan (d x+c) b^{2} c e^{3}}{2 d}+\frac{a^{2} c^{4} e^{3}}{4 d}$ $+\frac{b^{2} c^{2} e^{3}}{12 d}+x a^{2} c^{3} e^{3}+\frac{x b^{2} c e^{3}}{6}+\frac{d^{3} x^{4} a^{2} e^{3}}{4}+\frac{d x^{2} b^{2} e^{3}}{12}+\frac{\arctan (d x+c) x b^{2} e^{3}}{2}-\frac{e^{3} b^{2} \arctan (d x+c)^{2}}{4 d}-\frac{b^{2} e^{3} \ln \left(1+(d x+c)^{2}\right)}{3 d}$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (d x+c))^{2}}{d e x+c e} \mathrm{~d} x
$$

Optimal(type 4, 172 leaves, 8 steps):

$$
\begin{aligned}
& \frac{2(a+b \arctan (d x+c))^{2} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{e d}-\frac{\mathrm{I} b(a+b \arctan (d x+c)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{e d} \\
& \quad+\frac{\mathrm{I} b(a+b \arctan (d x+c)) \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{e d}-\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d}+\frac{b^{2} \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d}
\end{aligned}
$$

Result(type 4, 1432 leaves):
$\frac{2 a b \ln (d x+c) \arctan (d x+c)}{d e}+\frac{\mathrm{I} a b \operatorname{dilog}(1+\mathrm{I}(d x+c))}{d e}-\frac{2 \mathrm{I} b^{2} \arctan (d x+c) \operatorname{polylog}\left(2, \frac{1+\mathrm{I}(d x+c)}{\sqrt{1+(d x+c)^{2}}}\right)}{d e}$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{2}(a+b \arctan (d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 4, 254 leaves, 14 steps):
$a b^{2} e^{2} x+\frac{b^{3} e^{2}(d x+c) \arctan (d x+c)}{d}-\frac{b e^{2}(a+b \arctan (d x+c))^{2}}{2 d}-\frac{b e^{2}(d x+c)^{2}(a+b \arctan (d x+c))^{2}}{2 d}-\frac{\mathrm{I} e^{2}(a+b \arctan (d x+c))^{3}}{3 d}$
$+\frac{e^{2}(d x+c)^{3}(a+b \arctan (d x+c))^{3}}{3 d}-\frac{b e^{2}(a+b \arctan (d x+c))^{2} \ln \left(\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d}-\frac{b^{3} e^{2} \ln \left(1+(d x+c)^{2}\right)}{2 d}$

$$
-\frac{\mathrm{I} b^{2} e^{2}(a+b \arctan (d x+c)) \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d}-\frac{b^{3} e^{2} \operatorname{poly} \log \left(3,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 d}
$$

Result(type ?, 3241 leaves): Display of huge result suppressed!
Problem 6: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)(a+b \arctan (d x+c))^{3} \mathrm{~d} x
$$

Optimal(type 4, 150 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{3 \mathrm{I} b e(a+b \arctan (d x+c))^{2}}{2 d}-\frac{3 b e(d x+c)(a+b \arctan (d x+c))^{2}}{2 d}+\frac{e(a+b \arctan (d x+c))^{3}}{2 d}+\frac{e(d x+c)^{2}(a+b \arctan (d x+c))^{3}}{2 d} \\
& -\frac{3 b^{2} e(a+b \arctan (d x+c)) \ln \left(\frac{2}{1+\mathrm{I}(d x+c)}\right)}{d}-\frac{3 \mathrm{I} b^{3} e \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 d}
\end{aligned}
$$

Result(type 4, 566 leaves):
$\frac{3 d \arctan (d x+c)^{2} x^{2} a b^{2} e}{2}+\frac{3 d \arctan (d x+c) x^{2} a^{2} b e}{2}+\frac{3 \arctan (d x+c)^{2} a b^{2} c^{2} e}{2 d}-\frac{3 \arctan (d x+c) a b^{2} c e}{d}+\frac{3 \arctan (d x+c) a^{2} b c^{2} e}{2 d}$

$$
+3 \arctan (d x+c)^{2} x a b^{2} c e+3 \arctan (d x+c) x a^{2} b c e+\frac{3 \mathrm{I} e b^{3} \ln (d x+c+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right)}{4 d}-\frac{3 \mathrm{I} e b^{3} \ln \left(1+(d x+c)^{2}\right) \ln (d x+c+\mathrm{I})}{4 d}
$$

$$
+\frac{3 \mathrm{I} e b^{3} \ln \left(1+(d x+c)^{2}\right) \ln (d x+c-\mathrm{I})}{4 d}-\frac{3 \mathrm{I} e b^{3} \ln (d x+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right)}{4 d}-\frac{3 a^{2} b c e}{2 d}-3 \arctan (d x+c) x a b^{2} e
$$

$$
+\frac{d \arctan (d x+c)^{3} x^{2} b^{3} e}{2}+\frac{3 e a b^{2} \arctan (d x+c)^{2}}{2 d}+\frac{3 e a b^{2} \ln \left(1+(d x+c)^{2}\right)}{2 d}+\frac{3 a^{2} b e \arctan (d x+c)}{2 d}
$$

$$
+\frac{3 e b^{3} \arctan (d x+c) \ln \left(1+(d x+c)^{2}\right)}{2 d}+\frac{\arctan (d x+c)^{3} b^{3} c^{2} e}{2 d}-\frac{3 \arctan (d x+c)^{2} b^{3} c e}{2 d}+\frac{3 \mathrm{I} e b^{3} \ln (d x+c+\mathrm{I})^{2}}{8 d}
$$

$$
\begin{aligned}
& -\frac{3 \mathrm{I} e b^{3} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right)}{4 d}+\frac{3 \mathrm{I} e b^{3} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right)}{4 d}-\frac{3 \mathrm{I} e b^{3} \ln (d x+c-\mathrm{I})^{2}}{8 d}+\arctan (d x+c)^{3} x b^{3} c e+x a^{3} c e-\frac{3 a^{2} b x e}{2} \\
& +\frac{d x^{2} a^{3} e}{2}-\frac{3 \arctan (d x+c)^{2} x b^{3} e}{2}+\frac{e b^{3} \arctan (d x+c)^{3}}{2 d}+\frac{a^{3} c^{2} e}{2 d}
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (d x+c))^{3}}{d e x+c e} \mathrm{~d} x
$$

Optimal(type 4, 256 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{2(a+b \arctan (d x+c))^{3} \operatorname{arctanh}\left(-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{e d}-\frac{3 \mathrm{I} b(a+b \arctan (d x+c))^{2} \operatorname{polylog}\left(2,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d} \\
& +\frac{3 \mathrm{I} b(a+b \arctan (d x+c))^{2} \operatorname{polylog}\left(2,-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d}-\frac{3 b^{2}(a+b \arctan (d x+c)) \operatorname{polylog}\left(3,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d} \\
& \\
& +\frac{3 b^{2}(a+b \arctan (d x+c)) \operatorname{polylog}\left(3,-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{2 e d}+\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,1-\frac{2}{1+\mathrm{I}(d x+c)}\right)}{4 e d}-\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,-1+\frac{2}{1+\mathrm{I}(d x+c)}\right)}{4 e d}
\end{aligned}
$$

Result(type ?, 2893 leaves): Display of huge result suppressed!
Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (d x+c))^{3}}{(d e x+c e)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 156 leaves, 7 steps):
$-\frac{\mathrm{I}(a+b \arctan (d x+c))^{3}}{d e^{2}}-\frac{(a+b \arctan (d x+c))^{3}}{d e^{2}(d x+c)}+\frac{3 b(a+b \arctan (d x+c))^{2} \ln \left(2-\frac{2}{1-\mathrm{I}(d x+c)}\right)}{d e^{2}}$

$$
-\frac{3 \mathrm{I} b^{2}(a+b \arctan (d x+c)) \operatorname{polylog}\left(2,-1+\frac{2}{1-\mathrm{I}(d x+c)}\right)}{d e^{2}}+\frac{3 b^{3} \operatorname{polylog}\left(3,-1+\frac{2}{1-\mathrm{I}(d x+c)}\right)}{2 d e^{2}}
$$

Result(type ?, 2695 leaves): Display of huge result suppressed!
Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (d x+c))^{3}}{(d e x+c e)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 166 leaves, 9 steps):
$-\frac{3 \mathrm{I} b(a+b \arctan (d x+c))^{2}}{2 d e^{3}}-\frac{3 b(a+b \arctan (d x+c))^{2}}{2 d e^{3}(d x+c)}-\frac{(a+b \arctan (d x+c))^{3}}{2 d e^{3}}-\frac{(a+b \arctan (d x+c))^{3}}{2 d e^{3}(d x+c)^{2}}$

$$
+\frac{3 b^{2}(a+b \arctan (d x+c)) \ln \left(2-\frac{2}{1-\mathrm{I}(d x+c)}\right)}{d e^{3}}-\frac{3 \mathrm{I} b^{3} \operatorname{poly} \log \left(2,-1+\frac{2}{1-\mathrm{I}(d x+c)}\right)}{2 d e^{3}}
$$

Result(type 4, 630 leaves):

$$
\begin{aligned}
& -\frac{a^{3}}{2 d e^{3}(d x+c)^{2}}-\frac{b^{3} \arctan (d x+c)^{3}}{2 d e^{3}}-\frac{3 a b^{2} \ln \left(1+(d x+c)^{2}\right)}{2 d e^{3}}+\frac{3 a b^{2} \ln (d x+c)}{d e^{3}}-\frac{3 a^{2} b \arctan (d x+c)}{2 d e^{3}}-\frac{b^{3} \arctan (d x+c)^{3}}{2 d e^{3}(d x+c)^{2}} \\
& -\frac{3 b^{3} \arctan (d x+c)^{2}}{2 d e^{3}(d x+c)}-\frac{3 b^{3} \arctan (d x+c) \ln \left(1+(d x+c)^{2}\right)}{2 d e^{3}}+\frac{3 b^{3} \ln (d x+c) \arctan (d x+c)}{d e^{3}}-\frac{3 a b^{2} \arctan (d x+c)^{2}}{2 d e^{3}}-\frac{3 \mathrm{I} b^{3} \ln (d x+c+\mathrm{I})^{2}}{8 d e^{3}} \\
& -\frac{3 \mathrm{I} b^{3} \operatorname{dilog}\left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right)}{4 d e^{3}}-\frac{3 \mathrm{I} b^{3} \operatorname{dilog}(1-\mathrm{I}(d x+c))}{2 d e^{3}}+\frac{3 \mathrm{I} b^{3} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right)}{4 d e^{3}}+\frac{3 \mathrm{I} b^{3} \operatorname{dilog}(1+\mathrm{I}(d x+c))}{2 d e^{3}} \\
& +\frac{3 \mathrm{I} b^{3} \ln (d x+c-\mathrm{I})^{2}}{8 d e^{3}}-\frac{3 a^{2} b}{2 d e^{3}(d x+c)}-\frac{3 a^{2} b \arctan (d x+c)}{2 d e^{3}(d x+c)^{2}}-\frac{3 a b^{2} \arctan (d x+c)^{2}}{2 d e^{3}(d x+c)^{2}}-\frac{3 a b^{2} \arctan (d x+c)}{d e^{3}(d x+c)} \\
& +\frac{3 \mathrm{I} b^{3} \ln (d x+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}(d x+c+\mathrm{I})\right)}{4 d e^{3}}-\frac{3 \mathrm{I} b^{3} \ln (d x+c) \ln (1-\mathrm{I}(d x+c))}{2 d e^{3}}-\frac{3 \mathrm{I} b^{3} \ln (d x+c+\mathrm{I}) \ln \left(\frac{\mathrm{I}}{2}(d x+c-\mathrm{I})\right)}{4 d e^{3}} \\
& +\frac{3 \mathrm{I} b^{3} \ln \left(1+(d x+c)^{2}\right) \ln (d x+c+\mathrm{I})}{4 d e^{3}}+\frac{3 \mathrm{I} b^{3} \ln (d x+c) \ln (1+\mathrm{I}(d x+c))}{2 d e^{3}}-\frac{3 \mathrm{I} b^{3} \ln \left(1+(d x+c)^{2}\right) \ln (d x+c-\mathrm{I})}{4 d e^{3}}
\end{aligned}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \arctan (d x+c))^{3}}{f x+e} \mathrm{~d} x
$$

Optimal(type 4, 344 leaves, 2 steps):
$-\frac{(a+b \arctan (d x+c))^{3} \ln \left(\frac{2}{1-\mathrm{I}(d x+c)}\right)}{f}+\frac{(a+b \arctan (d x+c))^{3} \ln \left(\frac{2 d(f x+e)}{(e d+\mathrm{I} f-c f)(1-\mathrm{I}(d x+c))}\right)}{f}$

$$
\begin{aligned}
& +\frac{3 \mathrm{I} b(a+b \arctan (d x+c))^{2} \operatorname{polylog}\left(2,1-\frac{2}{1-\mathrm{I}(d x+c)}\right)}{2 f}-\frac{3 \mathrm{I} b(a+b \arctan (d x+c))^{2} \operatorname{poly} \log \left(2,1-\frac{2 d(f x+e)}{(e d+\mathrm{I} f-c f)(1-\mathrm{I}(d x+c))}\right)}{2 f} \\
& -\frac{3 b^{2}(a+b \arctan (d x+c)) \operatorname{polylog}\left(3,1-\frac{2}{1-\mathrm{I}(d x+c)}\right)}{2 f}+\frac{3 b^{2}(a+b \arctan (d x+c)) \operatorname{poly} \log \left(3,1-\frac{2}{(e d+\mathrm{I} f-c f)(1-\mathrm{I}(d x+c))}\right)}{2 f} \\
& -\frac{3 \mathrm{I} b^{3} \operatorname{polylog}\left(4,1-\frac{2 d(f x+e)}{1-\mathrm{I}(d x+c)}\right)}{4 f}+\frac{3 \mathrm{I} b^{3} \operatorname{poly} \log \left(4,1-\frac{2 d(f x+e)}{(e d+\mathrm{I} f-c f)(1-\mathrm{I}(d x+c))}\right)}{4 f}
\end{aligned}
$$

Result(type ?, 4388 leaves): Display of huge result suppressed!
Problem 14: Unable to integrate problem.

$$
\int(f x+e)^{m}(a+b \arctan (d x+c)) \mathrm{d} x
$$

Optimal(type 5, 171 leaves, 6 steps):

$$
\begin{gathered}
\frac{(f x+e)^{1+m}(a+b \arctan (d x+c))}{f(1+m)}-\frac{\mathrm{I} b d(f x+e)^{2+m} \text { hypergeom }\left([1,2+m],[3+m], \frac{d(f x+e)}{e d+\mathrm{I} f-c f}\right)}{2 f(e d+(\mathrm{I}-c) f)(1+m)(2+m)} \\
+\frac{\mathrm{I} b d(f x+e)^{2+m} \operatorname{hypergeom}\left([1,2+m],[3+m], \frac{d(f x+e)}{e d-(\mathrm{I}+c) f}\right)}{2 f(e d-(\mathrm{I}+c) f)(1+m)(2+m)}
\end{gathered}
$$

Result(type 8, 20 leaves):

$$
\int(f x+e)^{m}(a+b \arctan (d x+c)) \mathrm{d} x
$$

Problem 18: Humongous result has more than 20000 leaves.

$$
\int \frac{\arctan (b x+a)}{c+\frac{d}{x^{2}}} \mathrm{~d} x
$$

Optimal(type 4, 510 leaves, 25 steps):
$-\frac{(1+\mathrm{I} a+\mathrm{I} b x) \ln (1+\mathrm{I} a+\mathrm{I} b x)}{2 c b}-\frac{(1-\mathrm{I} a-\mathrm{I} b x) \ln (-\mathrm{I}(\mathrm{I}+a+b x))}{2 c b}+\frac{\mathrm{I} \ln (1+\mathrm{I} a+\mathrm{I} b x) \ln \left(-\frac{b(-x \sqrt{-c}+\sqrt{d})}{\mathrm{I} \sqrt{-c}-a \sqrt{-c}-b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}$

$$
+\frac{\mathrm{I} \ln (1-\mathrm{I} a-\mathrm{I} b x) \ln \left(-\frac{b(x \sqrt{-c}+\sqrt{d})}{(\mathrm{I}+a) \sqrt{-c}-b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}-\frac{\mathrm{I} \ln (1+\mathrm{I} a+\mathrm{I} b x) \ln \left(\frac{b(x \sqrt{-c}+\sqrt{d})}{\mathrm{I} \sqrt{-c}-a \sqrt{-c}+b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}
$$

$$
-\frac{\mathrm{I} \ln (1-\mathrm{I} a-\mathrm{I} b x) \ln \left(\frac{b(-x \sqrt{-c}+\sqrt{d})}{\mathrm{I} \sqrt{-c}+a \sqrt{-c}+b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}+\frac{\mathrm{I} \operatorname{polylog}\left(2, \frac{(\mathrm{I}-a-b x) \sqrt{-c}}{\mathrm{I} \sqrt{-c}-a \sqrt{-c}-b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}
$$

$$
+\frac{\mathrm{I} p o l y \log \left(2, \frac{(\mathrm{I}+a+b x) \sqrt{-c}}{\mathrm{I} \sqrt{-c}+a \sqrt{-c}-b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}-\frac{\mathrm{I} \operatorname{polylog}\left(2, \frac{(1+\mathrm{I} a+\mathrm{I} b x) \sqrt{-c}}{(1+\mathrm{I} a) \sqrt{-c}-\mathrm{I} b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}-\frac{\mathrm{Ipolylog}\left(2, \frac{(\mathrm{I}+a+b x) \sqrt{-c}}{\mathrm{I} \sqrt{-c}+a \sqrt{-c}+b \sqrt{d}}\right) \sqrt{d}}{4(-c)^{3 / 2}}
$$

Result(type ?, 27376 leaves): Display of huge result suppressed!
Problem 19: Result is not expressed in closed-form.

$$
\int \frac{\arctan (b x+a)}{c+\frac{d}{\sqrt{x}}} \mathrm{~d} x
$$

$$
\begin{aligned}
& \text { Optimal (type 4, } 612 \text { leaves, } 37 \text { steps): } \\
& -\frac{(1+\mathrm{I} a+\mathrm{I} b x) \ln (1+\mathrm{I} a+\mathrm{I} b x)}{2 c b}-\frac{(1-\mathrm{I} a-\mathrm{I} b x) \ln (-\mathrm{I}(\mathrm{I}+a+b x))}{2 c b}+\frac{\mathrm{I} d \ln (1+\mathrm{I} a+\mathrm{I} b x) \sqrt{x}}{c^{2}} \\
& -\frac{\mathrm{I} d^{2} \ln (d+c \sqrt{x}) \ln \left(\frac{c(\sqrt{-\mathrm{I}-a}-\sqrt{b} \sqrt{x})}{c \sqrt{-\mathrm{I}-a}+d \sqrt{b}}\right)}{c^{3}}-\frac{\mathrm{I} d^{2} \ln (1+\mathrm{I} a+\mathrm{I} b x) \ln (d+c \sqrt{x})}{c^{3}}-\frac{\mathrm{I} d^{2} \ln (d+c \sqrt{x}) \ln \left(\frac{c(\sqrt{-\mathrm{I}-a}+\sqrt{b} \sqrt{x})}{c \sqrt{-\mathrm{I}-a}-d \sqrt{b}}\right)}{c^{3}} \\
& +\frac{\mathrm{I} d^{2} \operatorname{polylog}\left(2,-\frac{\sqrt{b}(d+c \sqrt{x})}{c \sqrt{\mathrm{I}-a}-d \sqrt{b}}\right)}{c^{3}}-\frac{\mathrm{I} d \ln (1-\mathrm{I} a-\mathrm{I} b x) \sqrt{x}}{c^{2}}-\frac{\mathrm{I} d^{2} \operatorname{polylog}\left(2,-\frac{\sqrt{b}(d+c \sqrt{x})}{c \sqrt{-\mathrm{I}-a}-d \sqrt{b}}\right)}{c^{3}} \\
& +\frac{\mathrm{I} d^{2} \ln (d+c \sqrt{x}) \ln \left(\frac{c(\sqrt{\mathrm{I}-a}+\sqrt{b} \sqrt{x})}{c \sqrt{\mathrm{I}-a}-d \sqrt{b}}\right)}{c^{3}}-\frac{\mathrm{I} d^{2} \operatorname{polylog}\left(2, \frac{\sqrt{b}(d+c \sqrt{x})}{c \sqrt{-\mathrm{I}-a}+d \sqrt{b}}\right)}{c^{3}}+\frac{2 \mathrm{I} d \operatorname{arctanh}\left(\frac{\sqrt{b} \sqrt{x}}{\sqrt{\mathrm{I}-a}}\right) \sqrt{\mathrm{I}-a}}{c^{2} \sqrt{b}} \\
& - \\
& -\frac{2 \mathrm{I} d \arctan \left(\frac{\sqrt{b} \sqrt{x}}{\sqrt{\mathrm{I}+a}}\right) \sqrt{\mathrm{I}+a}}{c^{2} \sqrt{b}}+\frac{\mathrm{I} d^{2} \ln (d+c \sqrt{x}) \ln \left(\frac{c(\sqrt{\mathrm{I}-a}-\sqrt{b} \sqrt{x})}{c \sqrt{\mathrm{I}-a}+d \sqrt{b})}\right.}{c^{3}}+\frac{\mathrm{I} d^{2} \ln (1-\mathrm{I} a-\mathrm{I} b x) \ln (d+c \sqrt{x})}{c^{3}} \\
& + \\
& +\frac{\mathrm{I} d^{2} \operatorname{polylog}\left(2, \frac{\sqrt{b}(d+c \sqrt{x})}{c \sqrt{\mathrm{I}-a}+d \sqrt{b}}\right)}{c^{3}}
\end{aligned}
$$

Result(type 7, 1001 leaves):
$\frac{\arctan (b x+a) x}{c}-\frac{2 \arctan (b x+a) d \sqrt{x}}{c^{2}}+\frac{2 \arctan (b x+a) d^{2} \ln (d+c \sqrt{x})}{c^{3}}-\frac{1}{c}\left(d^{2}(\right.$

$$
\begin{aligned}
& \left.\left.\frac{-R 1\left(\ln (d+c \sqrt{x}) \ln \left(\frac{-c \sqrt{x}+__{2} R 1-d}{R l}\right)+\operatorname{dilog}\left(\frac{-c \sqrt{x}+R_{2} R 1-d}{R 1}\right)\right)}{_R l^{3} b-3 _R l^{2} b d+_R l a c^{2}+3 _R 1 b d^{2}-a c^{2} d-b d^{3}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2 c}\left(3 d^{3}\right.
\end{aligned}
$$

$\left.\left.__{-}=\operatorname{RootOf}\left(b^{2} __{-} Z^{4}-4 d b^{2} _^{3}+\left(2 c^{2} a b+6 d^{2} b^{2}\right) \sum^{2}+\left(-4 a b c^{2} d-4 b^{2} d^{3}\right) Z^{Z}+a^{2} c^{4}+2 a b c^{2} d^{2}+b^{2} d^{4}+c^{4}\right) \frac{\ln \left(c \sqrt{x}-R_{-} R+d\right)}{b_{-} R^{3}-3 b d R^{2}+c^{2} a_{-} R+3 b d^{2} R-a c^{2} d-b d^{3}}\right)\right)$ $+\frac{1}{2 c}(5 d)$
$\left.\left.__{-} R=\operatorname{RootOf}\left(b^{2} Z^{4}-4 d b^{2} Z^{3}+\left(2 c^{2} a b+6 d^{2} b^{2}\right) \sum_{Z^{2}+\left(-4 a b c^{2} d-4 b^{2} d^{3}\right)} Z_{-}+a^{2} c^{4}+2 a b c^{2} d^{2}+b^{2} d^{4}+c^{4}\right) \frac{R^{2} \ln \left(c \sqrt{x}-R_{-} R+d\right)}{b_{-} R^{3}-3 b d_{-} R^{2}+c^{2} a_{-} R+3 b d^{2} R_{-} R-a c^{2} d-b d^{3}}\right)\right)$ $-\frac{1}{2 c}\left(7 d^{2}\right.$
$\left.\left.{ }_{-} R=\operatorname{RootOf}\left(b^{2} Z^{4}-4 d b^{2} Z^{3}+\left(2 c^{2} a b+6 d^{2} b^{2}\right) \sum_{Z^{2}+\left(-4 a b c^{2} d-4 b^{2} d^{3}\right)} Z_{-}+a^{2} c^{4}+2 a b c^{2} d^{2}+b^{2} d^{4}+c^{4}\right) \frac{R \ln \left(c \sqrt{x}-R_{-} R+d\right)}{b_{-} R^{3}-3 b d_{-} R^{2}+c^{2} a_{-} R+3 b d^{2}{ }_{-} R-a c^{2} d-b d^{3}}\right)\right)$ $+\frac{1}{c}\left(d^{3}\right)$

$$
\begin{aligned}
& \left.\left.\frac{\ln (d+c \sqrt{x}) \ln \left(\frac{-c \sqrt{x}+__{2} R 1-d}{R 1}\right)+\operatorname{dilog}\left(\frac{-c \sqrt{x}+__{R} R 1-d}{R 1}\right)}{_^{R} l^{3} b-3 _R l^{2} b d+__{-} R 1 a c^{2}+3 _R 1 b d^{2}-a c^{2} d-b d^{3}}\right)\right)
\end{aligned}
$$

Test results for the 109 problems in "5.3.6 Exponentials of inverse tangent.txt"
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3} \sqrt{x^{2} a^{2}+1}}{1+\mathrm{I} a x} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 5 steps):

$$
-\frac{3 \mathrm{I} \operatorname{arcsinh}(a x)}{8 a^{4}}+\frac{x^{2} \sqrt{x^{2} a^{2}+1}}{3 a^{2}}-\frac{\mathrm{I} x^{3} \sqrt{x^{2} a^{2}+1}}{4 a}-\frac{(16-9 \mathrm{I} a x) \sqrt{x^{2} a^{2}+1}}{24 a^{4}}
$$

Result(type 3, 186 leaves):

$$
\frac{5 \mathrm{I} x \sqrt{x^{2} a^{2}+1}}{8 a^{3}}+\frac{5 \mathrm{I} \ln \left(\frac{x a^{2}}{\sqrt{a^{2}}}+\sqrt{x^{2} a^{2}+1}\right)}{8 a^{3} \sqrt{a^{2}}}+\frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{3 a^{4}}-\frac{\mathrm{I} x\left(x^{2} a^{2}+1\right)^{3 / 2}}{4 a^{3}}-\frac{\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}}{a^{4}}
$$

$$
-\frac{\mathrm{I} \ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{a^{3} \sqrt{a^{2}}}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x^{2} a^{2}+1}}{(1+\mathrm{I} a x) x} \mathrm{~d} x
$$

Optimal(type 3, 22 leaves, 6 steps):

$$
-I \operatorname{arcsinh}(a x)-\operatorname{arctanh}\left(\sqrt{x^{2} a^{2}+1}\right)
$$

Result(type 3, 120 leaves):

$$
\sqrt{x^{2} a^{2}+1}-\operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2} a^{2}+1}}\right)-\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}-\frac{\mathrm{I} a \ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{\sqrt{a^{2}}}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x^{2} a^{2}+1}}{(1+\mathrm{I} a x) x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 6 steps):

$$
\frac{a^{2} \operatorname{arctanh}\left(\sqrt{x^{2} a^{2}+1}\right)}{2}-\frac{\sqrt{x^{2} a^{2}+1}}{2 x^{2}}+\frac{\mathrm{I} a \sqrt{x^{2} a^{2}+1}}{x}
$$

Result(type 3, 218 leaves):

$$
\begin{aligned}
& -\frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{2 x^{2}}-\frac{a^{2} \sqrt{x^{2} a^{2}+1}}{2}+\frac{a^{2} \operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2} a^{2}+1}}\right)}{2}+a^{2} \sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)} \\
& +\frac{\mathrm{I} a^{3} \ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{\sqrt{a^{2}}}+\frac{\mathrm{I} a\left(x^{2} a^{2}+1\right)^{3 / 2}}{x}-\mathrm{I} a^{3} x \sqrt{x^{2} a^{2}+1}-\frac{\mathrm{I}-\sqrt{3} \ln \left(\frac{x a^{2}}{\sqrt{a^{2}}}+\sqrt{x^{2} a^{2}+1}\right)}{\sqrt{a^{2}}}
\end{aligned}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{(1+\mathrm{I} a x)^{3} x} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 8 steps):

$$
\mathrm{I} \operatorname{arcsinh}(a x)-\operatorname{arctanh}\left(\sqrt{x^{2} a^{2}+1}\right)+\frac{4 \mathrm{I} \sqrt{x^{2} a^{2}+1}}{-a x+\mathrm{I}}
$$

Result(type 3, 256 leaves):

$$
\begin{aligned}
& \frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{3}+\sqrt{x^{2} a^{2}+1}-\operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2} a^{2}+1}}\right)+\frac{\mathrm{I}\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{a^{3}\left(x-\frac{\mathrm{I}}{a}\right)^{3}}-\frac{\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{a^{2}\left(x-\frac{\mathrm{I}}{a}\right)^{2}} \\
& +\frac{2\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{3 / 2}}{3}+\mathrm{I} a \sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)} x \\
& +\frac{\mathrm{I} a \ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{\sqrt{a^{2}}}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{(1+\mathrm{I} a x)^{3} x^{4}} d x
$$

Optimal(type 3, 97 leaves, 14 steps):

$$
-\frac{11 \mathrm{I} a^{3} \operatorname{arctanh}\left(\sqrt{x^{2} a^{2}+1}\right)}{2}-\frac{\sqrt{x^{2} a^{2}+1}}{3 x^{3}}+\frac{3 \mathrm{I} a \sqrt{x^{2} a^{2}+1}}{2 x^{2}}+\frac{14 a^{2} \sqrt{x^{2} a^{2}+1}}{3 x}-\frac{4 a^{3} \sqrt{x^{2} a^{2}+1}}{-a x+\mathrm{I}}
$$

Result(type 3, 391 leaves):

$$
\begin{aligned}
& -\frac{\left(x^{2} a^{2}+1\right)^{5 / 2}}{3 x^{3}}+\frac{16 a^{2}\left(x^{2} a^{2}+1\right)^{5 / 2}}{3 x}-\frac{16 a^{4}\left(x^{2} a^{2}+1\right)^{3 / 2} x}{3}-8 a^{4} x \sqrt{x^{2} a^{2}+1}-\frac{8 a^{4} \ln \left(\frac{x a^{2}}{\sqrt{a^{2}}}+\sqrt{x^{2} a^{2}+1}\right)}{\sqrt{a^{2}}}+\frac{11 \mathrm{I} a^{3}\left(x^{2} a^{2}+1\right)^{3 / 2}}{6} \\
& +8 a^{4} \sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)} x+\frac{8 a^{4} \ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{\sqrt{a^{2}}}+\frac{3 \mathrm{I} a\left(x^{2} a^{2}+1\right)^{5 / 2}}{2 x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{11 \mathrm{I} a^{3} \sqrt{x^{2} a^{2}+1}}{2}-\frac{11 \mathrm{I} a^{3} \operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2} a^{2}+1}}\right)}{2}-\frac{\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{\left(x-\frac{\mathrm{I}}{a}\right)^{3}}+\frac{2 \mathrm{I} a\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{\left(x-\frac{\mathrm{I}}{a}\right)^{2}} \\
& -\frac{16 \mathrm{I} a^{3}\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{3 / 2}}{3}
\end{aligned}
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}}{x} \mathrm{~d} x
$$

Optimal(type 3, 204 leaves, 17 steps):
$-2 \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-2 \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-\frac{\ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2}$

$$
+\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2}+\arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}-\arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}
$$

Result(type 8, 27 leaves):

$$
\int \frac{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}}{x} d x
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}}{x^{2}} d x
$$

Optimal(type 3, 72 leaves, 6 steps):

$$
-\frac{(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{x}-\mathrm{I} a \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-\mathrm{I} a \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)
$$

Result(type 8, 27 leaves):

$$
\int \frac{\sqrt{\frac{1+\operatorname{Iax}}{\sqrt{x^{2} a^{2}+1}}}}{x^{2}} d x
$$

Problem 22: Unable to integrate problem.

$$
\int \frac{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}}{x^{3}} d x
$$

Optimal(type 3, 99 leaves, 7 steps):

$$
-\frac{\mathrm{I} a(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{4 x}-\frac{(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{5 / 4}}{2 x^{2}}+\frac{a^{2} \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)}{4}+\frac{a^{2} \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{\left.(1-\mathrm{I} a x)^{1 / 4}\right)}\right.}{4}
$$

Result(type 8, 27 leaves):

$$
\int \frac{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}}{x^{3}} d x
$$

Problem 23: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x^{3} \mathrm{~d} x
$$

Optimal(type 3, 252 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{41(1-\mathrm{I} a x)^{1 / 4}(1+\mathrm{I} a x)^{3 / 4}}{64 a^{4}}+\frac{x^{2}(1-\mathrm{I} a x)^{1 / 4}(1+\mathrm{I} a x)^{7 / 4}}{4 a^{2}}-\frac{(1-\mathrm{I} a x)^{1 / 4}(1+\mathrm{I} a x)^{7 / 4}(11+4 \mathrm{I} a x)}{32 a^{4}} \\
& \quad+\frac{123 \arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{128 a^{4}}-\frac{123 \arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{128 a^{4}}+\frac{123 \ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{256 a^{4}}
\end{aligned}
$$

$$
-\frac{123 \ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{256 a^{4}}
$$

Result(type 8, 27 leaves):

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x^{3} \mathrm{~d} x
$$

Problem 24: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2} x^{2} \mathrm{~d} x
$$

Optimal(type 3, 273 leaves, 16 steps):

$$
\frac{55 \mathrm{I}(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{8 a^{3}}+\frac{11 \mathrm{I}(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{5 / 4}}{4 a^{3}}+\frac{2 \mathrm{I}(1+\mathrm{I} a x)^{9 / 4}}{a^{3}(1-\mathrm{I} a x)^{1 / 4}}+\frac{\mathrm{I}(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{9 / 4}}{3 a^{3}}
$$

$$
-\frac{55 \mathrm{I} \arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{16 a^{3}}+\frac{55 \mathrm{I} \arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{16 a^{3}}+\frac{55 \mathrm{I} \ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{32 a^{3}}
$$

$$
-\frac{55 \mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{32 a^{3}}
$$

Result(type 8, 27 leaves):

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2} x^{2} \mathrm{~d} x
$$

Problem 25: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2} x \mathrm{~d} x
$$

Optimal(type 3, 242 leaves, 15 steps):
$-\frac{25(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{4 a^{2}}-\frac{5(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{5 / 4}}{2 a^{2}}-\frac{2(1+\mathrm{I} a x)^{9 / 4}}{a^{2}(1-\mathrm{I} a x)^{1 / 4}}+\frac{25 \arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{\left.(1+\mathrm{I} a x)^{1 / 4}\right) \sqrt{2}}\right.}{8 a^{2}}$ $-\frac{25 \arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{8 a^{2}}-\frac{25 \ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{16 a^{2}}$ $+\frac{25 \ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{16 a^{2}}$

Result(type 8, 25 leaves):

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2} x \mathrm{~d} x
$$

Problem 26: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}} \mathrm{~d} x
$$

Optimal(type 3, 201 leaves, 13 steps):

$$
\begin{array}{r}
-\frac{\mathrm{I}(1-\mathrm{I} a x)^{1 / 4}(1+\mathrm{I} a x)^{3 / 4}}{a}-\frac{\mathrm{I} \arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{2 a}+\frac{\mathrm{I} \arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{2 a} \\
-\frac{\mathrm{I} \ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{4 a}+\frac{\mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{4 a}
\end{array}
$$

Result(type 8, 23 leaves):

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}} x
$$

Optimal(type 3, 204 leaves, 17 steps):

$$
\begin{aligned}
& 2 \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-2 \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-\frac{\ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2} \\
& \quad+\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2}-\arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}+\arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}} x} \mathrm{~d} x
$$

Problem 28: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 201 leaves, 13 steps):

$$
\begin{aligned}
-\frac{\mathrm{I}(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{a}-\frac{3 \mathrm{I} \arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{2 a}+\frac{3 \mathrm{I} \arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}}{2 a} \\
+\frac{3 \mathrm{I} \ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{4 a}-\frac{3 \mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{4 a}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x} \mathrm{~d} x
$$

Optimal(type 3, 204 leaves, 17 steps):
$-2 \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)-2 \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)+\frac{\ln \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2}$

$$
-\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a x}}{\sqrt{1+\mathrm{I} a x}}\right) \sqrt{2}}{2}-\arctan \left(1-\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}+\arctan \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a x)^{1 / 4}}\right) \sqrt{2}
$$

Result(type 8, 27 leaves):

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x} \mathrm{~d} x
$$

Problem 30: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 72 leaves, 6 steps):

$$
-\frac{(1-\mathrm{I} a x)^{3 / 4}(1+\mathrm{I} a x)^{1 / 4}}{x}+3 \mathrm{I} a \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)+3 \mathrm{I} a \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)
$$

Result(type 8, 27 leaves):

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2} x^{2}} \mathrm{~d} x
$$

Problem 31: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2} x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 151 leaves, 10 steps):

$$
\begin{aligned}
& \frac{287 \mathrm{I} a^{3}(1-\mathrm{I} a x)^{1 / 4}}{24(1+\mathrm{I} a x)^{1 / 4}}-\frac{(1-\mathrm{I} a x)^{1 / 4}}{3 x^{3}(1+\mathrm{I} a x)^{1 / 4}}+\frac{13 \mathrm{I} a(1-\mathrm{I} a x)^{1 / 4}}{12 x^{2}(1+\mathrm{I} a x)^{1 / 4}}+\frac{61 a^{2}(1-\mathrm{I} a x)^{1 / 4}}{24 x(1+\mathrm{I} a x)^{1 / 4}}+\frac{55 \mathrm{I} a^{3} \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)}{8} \\
& \quad-\frac{55 \mathrm{I} a^{3} \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}\right)}{8}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int \frac{1}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{5 / 2}{ }_{x^{4}}} \mathrm{~d} x
$$

Problem 32: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3} \mathrm{~d} x
$$

Optimal(type 3, 188 leaves, 14 steps):
$\mathrm{I}(1-\mathrm{I} x)^{5 / 6}(1+\mathrm{I} x)^{1 / 6}+\frac{2 \mathrm{I} \arctan \left(\frac{(1-\mathrm{I} x)^{1 / 6}}{(1+\mathrm{I} x)^{1 / 6}}\right)}{3}+\frac{\mathrm{I} \arctan \left(\frac{2(1-\mathrm{I} x)^{1 / 6}}{(1+\mathrm{I} x)^{1 / 6}}-\sqrt{3}\right)}{3}+\frac{\mathrm{I} \arctan \left(\frac{2(1-\mathrm{I} x)^{1 / 6}}{\left.(1+\mathrm{I} x)^{1 / 6}+\sqrt{3}\right)}\right.}{3}$

$$
+\frac{\mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{(1+\mathrm{I} x)^{1 / 3}}-\frac{(1-\mathrm{I} x)^{1 / 6} \sqrt{3}}{(1+\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{6}-\frac{\mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{(1+\mathrm{I} x)^{1 / 3}}+\frac{(1-\mathrm{I} x)^{1 / 6} \sqrt{3}}{(1+\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{6}
$$

Result(type 8, 18 leaves):

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3} \mathrm{~d} x
$$

Problem 33: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x} \mathrm{~d} x
$$

Optimal(type 3, 324 leaves, 25 steps):

$$
\begin{aligned}
& -2 \arctan \left(\frac{(1-\mathrm{I} x)^{1 / 6}}{(1+\mathrm{I} x)^{1 / 6}}\right)-\arctan \left(\frac{2(1-\mathrm{I} x)^{1 / 6}}{(1+\mathrm{I} x)^{1 / 6}}-\sqrt{3}\right)-\arctan \left(\frac{2(1-\mathrm{I} x)^{1 / 6}}{(1+\mathrm{I} x)^{1 / 6}}+\sqrt{3}\right)-2 \operatorname{arctanh}\left(\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \\
& +\frac{\ln \left(1-\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}{2}-\frac{\ln \left(1+\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}{2}+\arctan \left(\frac{\left(1-\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3} \\
& -\arctan \left(\frac{\left(1+\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}-\frac{\ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{(1+\mathrm{I} x)^{1 / 3}}-\frac{(1-\mathrm{I} x)^{1 / 6} \sqrt{3}}{(1+\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{2}+\frac{\ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{(1+\mathrm{I} x)^{1 / 3}}+\frac{(1-\mathrm{I} x)^{1 / 6} \sqrt{3}}{(1+\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{2}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x} \mathrm{~d} x
$$

Problem 34: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 188 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{(1-\mathrm{I} x)^{5 / 6}(1+\mathrm{I} x)^{1 / 6}}{x}-\frac{2 \mathrm{I} \operatorname{arctanh}\left(\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right)}{3}+\frac{\mathrm{I} \ln \left(1-\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}{6}-\frac{\mathrm{I} \ln \left(1+\frac{(1+\mathrm{I} x)^{1 / 6}}{\left.(1-\mathrm{I} x)^{1 / 6}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}\right.}{6} \\
& \quad+\frac{\mathrm{I} \arctan \left(\frac{\left(1-\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}-\frac{\mathrm{I} \arctan \left(\frac{\left.\left(1+\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}\right)}{3}\right) \sqrt{3}}{3}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x^{2}} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 205 leaves, 14 steps):
$-\frac{(1-\mathrm{I} x)^{5 / 6}(1+\mathrm{I} x)^{7 / 6}}{2 x^{2}}-\frac{\mathrm{I}(1-\mathrm{I} x)^{5 / 6}(1+\mathrm{I} x)^{1 / 6}}{6 x}+\frac{\operatorname{arctanh}\left(\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right)}{9}-\frac{\ln \left(1-\frac{(1+\mathrm{I} x)^{1 / 6}}{\left.(1-\mathrm{I} x)^{1 / 6}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}\right.}{36}$

$$
+\frac{\ln \left(1+\frac{(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}+\frac{(1+\mathrm{I} x)^{1 / 3}}{(1-\mathrm{I} x)^{1 / 3}}\right)}{36}-\frac{\arctan \left(\frac{\left(1-\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{18}+\frac{\arctan \left(\frac{\left(1+\frac{2(1+\mathrm{I} x)^{1 / 6}}{(1-\mathrm{I} x)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{18}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{1 / 3}}{x^{3}} \mathrm{~d} x
$$

Problem 36: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3} x^{2} \mathrm{~d} x
$$

Optimal(type 3, 125 leaves, 5 steps):
$-\frac{11 \mathrm{I}(1-\mathrm{I} x)^{2 / 3}(1+\mathrm{I} x)^{1 / 3}}{27}-\frac{\mathrm{I}(1-\mathrm{I} x)^{2 / 3}(1+\mathrm{I} x)^{4 / 3}}{9}+\frac{(1-\mathrm{I} x)^{2 / 3}(1+\mathrm{I} x)^{4 / 3} x}{3}+\frac{11 \mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{\left.(1+\mathrm{I} x)^{1 / 3}\right)}\right.}{27}+\frac{11 \mathrm{I} \ln (1+\mathrm{I} x)}{81}$

$$
+\frac{22 \mathrm{I} \arctan \left(\frac{\sqrt{3}}{3}-\frac{2(1-\mathrm{I} x)^{1 / 3} \sqrt{3}}{3(1+\mathrm{I} x)^{1 / 3}}\right) \sqrt{3}}{81}
$$

Result(type 8, 22 leaves):

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3} x^{2} \mathrm{~d} x
$$

Problem 37: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3} \mathrm{~d} x
$$

Optimal(type 3, 87 leaves, 3 steps):

$$
\mathrm{I}(1-\mathrm{I} x)^{2 / 3}(1+\mathrm{I} x)^{1 / 3}-\mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} x)^{1 / 3}}{(1+\mathrm{I} x)^{1 / 3}}\right)-\frac{\mathrm{I} \ln (1+\mathrm{I} x)}{3}-\frac{2 \operatorname{I} \arctan \left(\frac{\sqrt{3}}{3}-\frac{2(1-\mathrm{I} x)^{1 / 3} \sqrt{3}}{3(1+\mathrm{I} x)^{1 / 3}}\right) \sqrt{3}}{3}
$$

Result(type 8, 18 leaves):

$$
\int\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 84 leaves, 3 steps):

$$
-\frac{(1-\mathrm{I} x)^{2 / 3}(1+\mathrm{I} x)^{1 / 3}}{x}+\mathrm{I} \ln \left((1-\mathrm{I} x)^{1 / 3}-(1+\mathrm{I} x)^{1 / 3}\right)-\frac{\mathrm{I} \ln (x)}{3}+\frac{2 \mathrm{I} \arctan \left(\frac{\sqrt{3}}{3}+\frac{2(1-\mathrm{I} x)^{1 / 3} \sqrt{3}}{3(1+\mathrm{I} x)^{1 / 3}}\right) \sqrt{3}}{3}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} x}{\sqrt{x^{2}+1}}\right)^{2 / 3}}{x^{2}} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4}}{x} \mathrm{~d} x
$$

Optimal(type 3, 636 leaves, 39 steps):
$-2 \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 8}}{(1-\mathrm{I} a x)^{1 / 8}}\right)-2 \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 8}}{(1-\mathrm{I} a x)^{1 / 8}}\right)+\frac{\ln \left(1+\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}-\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{2}$

$$
\begin{aligned}
& -\frac{\ln \left(1+\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}+\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{2}+\arctan \left(1-\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}-\arctan \left(1+\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2} \\
& +\arctan \left(\frac{-\frac{2(1-\mathrm{I} a x)^{1 / 8}}{(1+\mathrm{I} a x)^{1 / 8}}+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}-\arctan \left(\frac{\left.\frac{2(1-\mathrm{I} a x)^{1 / 8}}{(1+\mathrm{I} a x)^{1 / 8}}+\sqrt{2+\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right. \\
& -\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4}}{(1+\mathrm{I} a x)^{1 / 4}}-\frac{(1-\mathrm{I} a x)^{1 / 8} \sqrt{2-\sqrt{2}}}{(1+\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2-\sqrt{2}}}{2}+\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{\left.(1-\mathrm{I} a x)^{1 / 8 \sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}}{(1+\mathrm{I} a x)^{1 / 8}}\right)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\arctan \left(\frac{-\frac{2(1-\mathrm{I} a x)^{1 / 8}}{(1+\mathrm{I} a x)^{1 / 8}}+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}}-\arctan \left(\frac{\frac{2(1-\mathrm{I} a x)^{1 / 8}}{(1+\mathrm{I} a x)^{1 / 8}}+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}} \\
& -\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4}}{(1+\mathrm{I} a x)^{1 / 4}}-\frac{(1-\mathrm{I} a x)^{1 / 8} \sqrt{2+\sqrt{2}}}{(1+\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2+\sqrt{2}}}{2}+\frac{\ln \left(1+\frac{(1-\mathrm{I} a x)^{1 / 4}}{(1+\mathrm{I} a x)^{1 / 4}}+\frac{(1-\mathrm{I} a x)^{1 / 8} \sqrt{2+\sqrt{2}}}{(1+\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2+\sqrt{2}}}{2}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4}}{x} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 271 leaves, 17 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} a(1-\mathrm{I} a x)^{7 / 8}(1+\mathrm{I} a x)^{1 / 8}}{8 x}-\frac{(1-\mathrm{I} a x)^{7 / 8}(1+\mathrm{I} a x)^{9 / 8}}{2 x^{2}}+\frac{a^{2} \arctan \left(\frac{(1+\mathrm{I} a x)^{1 / 8}}{(1-\mathrm{I} a x)^{1 / 8}}\right)}{16}+\frac{a^{2} \operatorname{arctanh}\left(\frac{(1+\mathrm{I} a x)^{1 / 8}}{\left.(1-\mathrm{I} a x)^{1 / 8}\right)}\right.}{16} \\
& \\
& -\frac{a^{2} \arctan \left(1-\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{32}+\frac{a^{2} \arctan \left(1+\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{32}-\frac{a^{2} \ln \left(1+\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}-\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{64} \\
& \quad+\frac{a^{2} \ln \left(1+\frac{(1+\mathrm{I} a x)^{1 / 4}}{(1-\mathrm{I} a x)^{1 / 4}}+\frac{(1+\mathrm{I} a x)^{1 / 8} \sqrt{2}}{(1-\mathrm{I} a x)^{1 / 8}}\right) \sqrt{2}}{64}
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4}}{x^{3}} \mathrm{~d} x
$$

[^4]$$
\int \frac{x^{m} \sqrt{x^{2} a^{2}+1}}{1+\mathrm{I} a x} \mathrm{~d} x
$$

Optimal(type 5, 70 leaves, 4 steps):

$$
\frac{x^{1+m} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right],-x^{2} a^{2}\right)}{1+m}-\frac{\mathrm{I} a x^{2+m} \operatorname{hypergeom}\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],-x^{2} a^{2}\right)}{2+m}
$$

Result(type 8, 26 leaves):

$$
\int \frac{x^{m} \sqrt{x^{2} a^{2}+1}}{1+\mathrm{I} a x} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x^{m}}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}} \mathrm{~d} x
$$

Optimal(type 6, 30 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(1+m, \frac{1}{4},-\frac{1}{4}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right)}{1+m}
$$

Result(type 8, 27 leaves):

$$
\int \frac{x^{m}}{\sqrt{\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{x^{m}}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 30 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(1+m, \frac{3}{4},-\frac{3}{4}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right)}{1+m}
$$

Result(type 8, 27 leaves):

$$
\int \frac{x^{m}}{\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4} x^{m} \mathrm{~d} x
$$

Optimal(type 6, 30 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellFI }\left(1+m,-\frac{1}{8}, \frac{1}{8}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right)}{1+m}
$$

Result(type 8, 27 leaves):

$$
\int\left(\frac{1+\mathrm{I} a x}{\sqrt{x^{2} a^{2}+1}}\right)^{1 / 4} x^{m} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \mathrm{e}^{\mathrm{In} \arctan (a x)} x^{2} \mathrm{~d} x
$$

Optimal(type 5, 125 leaves, 4 steps):
$-\frac{\mathrm{I} n(1-\mathrm{I} a x)^{1-\frac{n}{2}}(1+\mathrm{I} a x)^{1+\frac{n}{2}}}{6 a^{3}}+\frac{x(1-\mathrm{I} a x)^{1-\frac{n}{2}}(1+\mathrm{I} a x)^{1+\frac{n}{2}}}{3 a^{2}}$

$$
-\frac{\mathrm{I} 2^{\frac{n}{2}}\left(n^{2}+2\right)(1-\mathrm{I} a x)^{1-\frac{n}{2}} \text { hypergeom }\left(\left[-\frac{n}{2}, 1-\frac{n}{2}\right],\left[2-\frac{n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{3 a^{3}(2-n)}
$$

Result(type 8, 15 leaves):

$$
\int \mathrm{e}^{\mathrm{In} \arctan (a x)} x^{2} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \mathrm{e}^{\mathrm{I} n \arctan (a x)} x \mathrm{~d} x
$$

Optimal(type 5, 85 leaves, 3 steps):

$$
\frac{(1-\mathrm{I} a x)^{1-\frac{n}{2}}(1+\mathrm{I} a x)^{1+\frac{n}{2}}}{2 a^{2}}+\frac{2^{\frac{n}{2}} n(1-\mathrm{I} a x)^{1-\frac{n}{2}} \text { hypergeom }\left(\left[-\frac{n}{2}, 1-\frac{n}{2}\right],\left[2-\frac{n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a^{2}(2-n)}
$$

Result(type 8, 13 leaves):

$$
\int \mathrm{e}^{\mathrm{I} n \arctan (a x)} x \mathrm{~d} x
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}} x} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 8 steps):

$$
\mathrm{I} \operatorname{arcsinh}(b x+a)-\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{I}+a} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{\sqrt{\mathrm{I}-a} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}}\right) \sqrt{\mathrm{I}-a}}{\sqrt{\mathrm{I}+a}}
$$

Result(type 3, 156 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I} b \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{\sqrt{b^{2}}}-\frac{\mathrm{I} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right) a}{\sqrt{a^{2}+1}} \\
& \quad-\frac{\ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{\sqrt{a^{2}+1}}
\end{aligned}
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{(1+\mathrm{I}(b x+a))^{3}}{\left(1+(b x+a)^{2}\right)^{3 / 2} x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 266 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{\left(11 \mathrm{I}-18 a-6 \mathrm{I} a^{2}\right) b^{3} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{I}+a} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{\sqrt{\mathrm{I}-a} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}}\right)}{(\mathrm{I}-a)^{3 / 2}(\mathrm{I}+a)^{9 / 2}}+\frac{\left(52+51 \mathrm{I} a-2 a^{2}\right) b^{3} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{6(\mathrm{I}-a)(\mathrm{I}+a)^{4} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}}-\frac{(\mathrm{I}-a) \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{3(\mathrm{I}+a) x^{3} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}} \\
& \quad+\frac{7 \mathrm{I} b \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{6(\mathrm{I}+a)^{2} x^{2} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}}+\frac{(19+16 \mathrm{I} a) b^{2} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{6(\mathrm{I}-a)(\mathrm{I}+a)^{3} x \sqrt{1-\mathrm{I} a-\mathrm{I} b x}} \\
& \text { Result(type ?, 2623 leaves): Display of huge result suppressed! }
\end{aligned}
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3} \sqrt{1+(b x+a)^{2}}}{1+\mathrm{I}(b x+a)} \mathrm{d} x
$$

Optimal(type 3, 163 leaves, 7 steps):

$$
-\frac{\left(3 \mathrm{I}-12 a-12 \mathrm{I} a^{2}+8 a^{3}\right) \operatorname{arcsinh}(b x+a)}{8 b^{4}}+\frac{x^{2}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{4 b^{2}}
$$

$$
-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2}\left(7+10 \mathrm{I} a-18 a^{2}-2(\mathrm{I}-6 a) b x\right) \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{24 b^{4}}-\frac{\left(3+12 \mathrm{I} a-12 a^{2}-8 \mathrm{I} a^{3}\right) \sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{8 b^{4}}
$$

Result(type 3, 893 leaves):

$$
\begin{aligned}
& -\frac{3 \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x a}{2 b^{3}}-\frac{3 \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right) a}{2 b^{3} \sqrt{b^{2}}}-\frac{3 \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} a^{2}}{2 b^{4}} \\
& -\frac{3 \mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a}{b^{4}}+\frac{3 \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a^{2}}{b^{4}}-\frac{3 \mathrm{I} a^{3} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{2 b^{4}} \\
& +\frac{5 \mathrm{I} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} a}{8 b^{4}}+\frac{5 \mathrm{I} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{8 b^{3} \sqrt{b^{2}}}+\frac{\mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a^{3}}{b^{4}} \\
& - \\
& -\frac{\ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a^{3}}{b^{3} \sqrt{b^{2}}} \\
& +\frac{3 \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a}{b^{3} \sqrt{b^{2}}} \\
& \\
& \\
& \\
& +\frac{\mathrm{I} \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right)}{b^{3} \sqrt{b^{2}}}-\frac{\mathrm{I} x\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{4 b^{3}}+\frac{\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{3 b^{4}} \\
& \\
& +\frac{5 \mathrm{I} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x-\frac{3 \mathrm{I} a^{2} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x}{2 b^{3}}}{4 b^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 \mathrm{I} \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a^{2}}{b^{3} \sqrt{b^{2}}} \\
+ & \frac{3 \mathrm{I} a^{2} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{2 b^{3} \sqrt{b^{2}}} \\
b^{4} &
\end{aligned}
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{1+(b x+a)^{2}}}{(1+\mathrm{I}(b x+a)) x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 226 leaves, 7 steps):

$$
\begin{aligned}
& \frac{\left(2 a+\mathrm{I}\left(-2 a^{2}+1\right)\right) b^{3} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{I}+a} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{\sqrt{\mathrm{I}-a} \sqrt{1-\mathrm{I} a-\mathrm{I} b x}}\right)}{(\mathrm{I}-a)^{7 / 2}(\mathrm{I}+a)^{5 / 2}} \\
& \quad+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{3(1+\mathrm{I} a) x^{3}}+\frac{(3-2 \mathrm{I} a) b \sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{6(\mathrm{I}-a)^{2}(\mathrm{I}+a) x^{2}} \\
& \quad+\frac{\left(4-9 \mathrm{I} a-2 a^{2}\right) b^{2} \sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{6(1+\mathrm{I} a)\left(a^{2}+1\right)^{2} x}
\end{aligned}
$$

Result(type 3, 1737 leaves):

$$
\begin{aligned}
& \frac{b^{4} \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right)}{(\mathrm{I}-a)^{4} \sqrt{b^{2}}}-\frac{\mathrm{I} b^{3} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}}{(\mathrm{I}-a)^{4}} \\
& \\
& \left.+\frac{\mathrm{I} b^{3} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{(\mathrm{I}-a)^{4}}-\frac{\mathrm{I}\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{3(\mathrm{I}-a)\left(a^{2}+1\right) x^{3}}-\frac{\mathrm{I} b^{3} \sqrt{a^{2}+1} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{2(\mathrm{I}-a)^{2} \sqrt{a^{2}+1}}\right) \\
& \\
& +\frac{\mathrm{I} b^{3} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)}-\frac{\mathrm{I} b^{3} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{\left(\frac{\mathrm{I} a^{3} b^{3} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{(\mathrm{I}-a)\left(a^{2}+1\right)^{3}}\right.} \\
& \\
& \\
& -\frac{\mathrm{I} b\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{2(\mathrm{I}-a)^{2}\left(a^{2}+1\right) x^{2}}-\frac{\mathrm{I} b^{3} a^{2} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{2}}+\frac{\mathrm{I} b^{3} a^{2} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b^{4} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x}{(\mathrm{I}-a)^{3}\left(a^{2}+1\right)}+\frac{\mathrm{I} b^{4} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{(\mathrm{I}-a)^{3}\left(a^{2}+1\right) \sqrt{b^{2}}}-\frac{\mathrm{I} b^{2}\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{(\mathrm{I}-a)^{3}\left(a^{2}+1\right) x} \\
& +\frac{2 \mathrm{I} b^{3} a \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{(\mathrm{I}-a)^{3}\left(a^{2}+1\right)}-\frac{\mathrm{I} b^{3} a \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{(\mathrm{I}-a)^{3} \sqrt{a^{2}+1}} \\
& +\frac{\mathrm{I} b^{4} a \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{(\mathrm{I}-a)^{4} \sqrt{b^{2}}}-\frac{\mathrm{I} a^{3} b^{3} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{5 / 2}} \\
& -\frac{\mathrm{I} a b^{3} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{2}}+\frac{\mathrm{I} a b^{3} \ln \left(\frac{2 a^{2}+2+2 a b x+2 \sqrt{a^{2}+1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{x}\right)}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{3 / 2}}+\frac{\mathrm{I} a b\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{2} x^{2}} \\
& -\frac{\mathrm{I} a^{2} b^{2}\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{3} x}+\frac{\mathrm{I} a^{4} b^{4} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{3} \sqrt{b^{2}}}+\frac{\mathrm{I} a^{2} b^{4} \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x}{2(\mathrm{I}-a)\left(a^{2}+1\right)^{3}} \\
& +\frac{\mathrm{I} a^{2} b^{4} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{\mathrm{I} a^{2} b^{4} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}+\frac{\mathrm{I} b^{2} a\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{2(I-a)^{2}\left(a^{2}+1\right)^{2} x} \\
& 2(\mathrm{I}-a)\left(a^{2}+1\right)^{3} \sqrt{b^{2}} \quad 2(\mathrm{I}-a)\left(a^{2}+1\right)^{2} \sqrt{b^{2}}+\frac{2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{2} x}{} \\
& -\underline{\mathrm{I} b^{4} a^{3} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}-\frac{\mathrm{I} b^{4} a \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1} x}{}-\frac{\mathrm{I} b^{4} a \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right.}{} \\
& 2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{2} \sqrt{b^{2}} \\
& 2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{2} \\
& 2(\mathrm{I}-a)^{2}\left(a^{2}+1\right)^{2} \sqrt{b^{2}} \\
& +\underline{\mathrm{I} b^{4} a \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}+\underline{\mathrm{I} b^{4} a^{2} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)} \\
& 2(\mathrm{I}-a)^{2}\left(a^{2}+1\right) \sqrt{b^{2}} \\
& (\mathrm{I}-a)^{3}\left(a^{2}+1\right) \sqrt{b^{2}}
\end{aligned}
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(1+(b x+a)^{2}\right)}{(1+\mathrm{I}(b x+a))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 3 steps):

$$
\frac{2(1+\mathrm{I} a) x}{b^{2}}-\frac{\mathrm{I} x^{2}}{b}-\frac{x^{3}}{3}-\frac{2 \mathrm{I}(\mathrm{I}-a)^{2} \ln (\mathrm{I}-a-b x)}{b^{3}}
$$

Result(type 3, 142 leaves):

$$
\begin{aligned}
-\frac{x^{3}}{3} & -\frac{\mathrm{I} x^{2}}{b}+\frac{2 \mathrm{I} a x}{b^{2}}+\frac{2 x}{b^{2}}+\frac{2 \arctan (b x+a) a^{2}}{b^{3}}-\frac{\mathrm{I} \ln \left(x^{2} b^{2}+2 a b x+a^{2}+1\right) a^{2}}{b^{3}}-\frac{2 \arctan (b x+a)}{b^{3}}-\frac{4 \mathrm{I} \arctan (b x+a) a}{b^{3}} \\
& +\frac{\mathrm{I} \ln \left(x^{2} b^{2}+2 a b x+a^{2}+1\right)}{b^{3}}-\frac{2 \ln \left(x^{2} b^{2}+2 a b x+a^{2}+1\right) a}{b^{3}}
\end{aligned}
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int \frac{1+(b x+a)^{2}}{(1+\mathrm{I}(b x+a))^{2} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 3 steps):

$$
\frac{-\mathrm{I}-a}{2(\mathrm{I}-a) x^{2}}-\frac{2 \mathrm{I} b}{(\mathrm{I}-a)^{2} x}-\frac{2 b^{2} \ln (x)}{(1+\mathrm{I} a)^{3}}+\frac{2 b^{2} \ln (\mathrm{I}-a-b x)}{(1+\mathrm{I} a)^{3}}
$$

Result(type 3, 245 leaves):

$$
\frac{\mathrm{I} b^{2} \ln \left(x^{2} b^{2}+2 a b x+a^{2}+1\right) a}{(\mathrm{I}-a)^{4}}+\frac{b^{2} \ln \left(x^{2} b^{2}+2 a b x+a^{2}+1\right)}{(\mathrm{I}-a)^{4}}-\frac{2 b^{2} \arctan (b x+a) a}{(\mathrm{I}-a)^{4}}+\frac{2 \mathrm{I} b^{2} \arctan (b x+a)}{(\mathrm{I}-a)^{4}}-\frac{\mathrm{I} a^{3}}{(\mathrm{I}-a)^{4} x^{2}}+\frac{a^{4}}{2(\mathrm{I}-a)^{4} x^{2}}
$$

$$
-\frac{\mathrm{I} a}{(\mathrm{I}-a)^{4} x^{2}}-\frac{1}{2(\mathrm{I}-a)^{4} x^{2}}-\frac{2 \mathrm{I} b^{2} \ln (x) a}{(\mathrm{I}-a)^{4}}-\frac{2 b^{2} \ln (x)}{(\mathrm{I}-a)^{4}}-\frac{2 \mathrm{I} b a^{2}}{(\mathrm{I}-a)^{4} x}+\frac{2 \mathrm{I} b}{(\mathrm{I}-a)^{4} x}-\frac{4 b a}{(\mathrm{I}-a)^{4} x}
$$

Problem 54: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}\left(1+(b x+a)^{2}\right)^{3 / 2}}{(1+\mathrm{I}(b x+a))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 262 leaves, 9 steps):
$-\frac{3\left(19+68 \mathrm{I} a-88 a^{2}-48 \mathrm{I} a^{3}+8 a^{4}\right) \operatorname{arcsinh}(b x+a)}{8 b^{5}}+\frac{2 \mathrm{I} x^{4}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2}}{b \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}-\frac{3(17 \mathrm{I}-16 a) x^{2}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{20 b^{3}}$

$$
-\frac{11 x^{3}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{5 b^{2}}+\frac{\mathrm{I}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2}\left(163+458 \mathrm{I} a-422 a^{2}-112 \mathrm{I} a^{3}-2\left(61 \mathrm{I}-118 a-52 \mathrm{I} a^{2}\right) b x\right) \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{40 b^{5}}
$$

$$
+\frac{3\left(19 \mathrm{I}-68 a-88 \mathrm{I} a^{2}+48 a^{3}+8 \mathrm{I} a^{4}\right) \sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{8 b^{5}}
$$

Result(type ?, 2057 leaves): Display of huge result suppressed!
Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}\left(1+(b x+a)^{2}\right)^{3 / 2}}{(1+\mathrm{I}(b x+a))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 200 leaves, 8 steps):
$\frac{3\left(17 \mathrm{I}-44 a-36 \mathrm{I} a^{2}+8 a^{3}\right) \operatorname{arcsinh}(b x+a)}{8 b^{4}}+\frac{2 \mathrm{I} x^{3}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2}}{b \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}-\frac{9 x^{2}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{4 b^{2}}$
$-\frac{\mathrm{I}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 2}\left(29 \mathrm{I}-54 a-22 \mathrm{I} a^{2}+2(11+10 \mathrm{I} a) b x\right) \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{8 b^{4}}+\frac{3\left(17+44 \mathrm{I} a-36 a^{2}-8 \mathrm{I} a^{3}\right) \sqrt{1-\mathrm{I} a-\mathrm{I} b x} \sqrt{1+\mathrm{I} a+\mathrm{I} b x}}{8 b^{4}}$
Result(type 3, 1528 leaves):
$\frac{6 \mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} x}{b^{3}}-\frac{27 \mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a^{3}}{2 b^{4}}+\frac{\mathrm{I} x\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{4 b^{3}}$
$+\frac{\mathrm{I} a\left(x^{2} b^{2}+2 a b x+a^{2}+1\right)^{3 / 2}}{4 b^{4}}+\frac{3 \mathrm{I} x \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{8 b^{3}}+\frac{3 \mathrm{I} a \sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}}{8 b^{4}}$
$+\frac{3 \mathrm{I} \ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}+1}\right)}{8 b^{3} \sqrt{b^{2}}}+\frac{\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a^{3}}{b^{7}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{3}}$
$-\frac{3\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a}{b^{7}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{3}}+\frac{\mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2}}{b^{7}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{3}}$
$+\frac{3 \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} x a^{3}}{b^{3}}-\frac{2 \mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{3 / 2} a^{3}}{b^{4}}$
$+\frac{11 \mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{3 / 2} a}{b^{4}}+\frac{6 \mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a}{b^{4}}$
$+\frac{6 \mathrm{I} \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right)}{b^{3} \sqrt{b^{2}}}-\frac{33 \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} x a}{2 b^{3}}$
$+\frac{9\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a^{2}}{b^{6}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{2}}+\frac{4\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{3 / 2}}{b^{4}}$

$$
\begin{aligned}
& +\frac{3 \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a^{4}}{b^{4}}-\frac{5\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2}}{b^{6}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{2}} \\
& -\frac{9\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{3 / 2} a^{2}}{b^{4}}-\frac{27 \mathrm{I} \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} x a^{2}}{2 b^{3}} \\
& -\frac{3 \mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a^{2}}{b^{7}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{3}}+\frac{2 \mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a^{3}}{b^{6}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{2}} \\
& -\frac{12 \mathrm{I}\left(b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)\right)^{5 / 2} a}{b^{6}\left(x-\frac{\mathrm{I}}{b}+\frac{a}{b}\right)^{2}}-\frac{27 \mathrm{I} \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a^{2}}{2 b^{3} \sqrt{b^{2}}} \\
& -\frac{33 \sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)} a^{2}}{2 b^{4}}+\frac{3 \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a^{3}}{b^{3} \sqrt{b^{2}}} \\
& 33 \ln \left(\frac{\mathrm{I} b+b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)}{\sqrt{b^{2}}}+\sqrt{b^{2}\left(x-\frac{\mathrm{I}-a}{b}\right)^{2}+2 \mathrm{I} b\left(x-\frac{\mathrm{I}-a}{b}\right)}\right) a \\
& 2 b^{3} \sqrt{b^{2}}
\end{aligned}
$$

Problem 56: Unable to integrate problem.

$$
\int \sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}} x \mathrm{~d} x
$$

Optimal(type 3, 313 leaves, 14 steps):
$\frac{(1-4 \mathrm{I} a)(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{4 b^{2}}+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{5 / 4}}{2 b^{2}}-\frac{(1-4 \mathrm{I} a) \arctan \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{\left.(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}\right) \sqrt{2}}\right.}{8 b^{2}}$

$$
\begin{aligned}
& +\frac{(1-4 \mathrm{I} a) \arctan \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{8 b^{2}}+\frac{(1-4 \mathrm{I} a) \ln \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{16 b^{2}} \\
& -\frac{(1-4 \mathrm{I} a) \ln \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{16 b^{2}}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int \sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}} x \mathrm{~d} x
$$

Problem 57: Unable to integrate problem.

$$
\int \frac{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}}}{x^{2}} d x
$$

Optimal(type 3, 159 leaves, 6 steps):

$$
-\frac{(\mathrm{I}+a+b x)(1+\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}+a) x(1-\mathrm{I}(b x+a))^{1 / 4}}+\frac{\mathrm{I} b \arctan \left(\frac{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I}(b x+a))^{1 / 4}}\right)}{(\mathrm{I}-a)^{3 / 4}(\mathrm{I}+a)^{5 / 4}}+\frac{\mathrm{I} b \operatorname{arctanh}\left(\frac{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I}(b x+a))^{1 / 4}}\right)}{(\mathrm{I}-a)^{3 / 4}(\mathrm{I}+a)^{5 / 4}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}}}{x^{2}} \mathrm{~d} x
$$

Problem 58: Unable to integrate problem.

$$
\int\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2} x^{2} \mathrm{~d} x
$$

Optimal(type 3, 381 leaves, 15 steps):
$-\frac{\left(17 \mathrm{I}+36 a-24 \mathrm{I} a^{2}\right)(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{3 / 4}}{24 b^{3}}-\frac{(3 \mathrm{I}+8 a)(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{7 / 4}}{12 b^{3}}$

$$
\begin{aligned}
& +\frac{x(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{7 / 4}}{3 b^{2}}+\frac{\left(17 \mathrm{I}+36 a-24 \mathrm{I} a^{2}\right) \arctan \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{16 b^{3}} \\
& -\frac{\left(17 \mathrm{I}+36 a-24 \mathrm{I} a^{2}\right) \arctan \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{16 b^{3}} \\
& +\frac{\left(17 \mathrm{I}+36 a-24 \mathrm{I} a^{2}\right) \ln \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{32 b^{3}} \\
& -\frac{\left(17 \mathrm{I}+36 a-24 \mathrm{I} a^{2}\right) \ln \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{32 b^{3}}
\end{aligned}
$$

Result(type 8, 30 leaves):

$$
\int\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2} x^{2} \mathrm{~d} x
$$

Problem 59: Unable to integrate problem.

$$
\int \frac{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 160 leaves, 6 steps):

$$
-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{3 / 4}}{(1-\mathrm{I} a) x}-\frac{3 \mathrm{I} b \arctan \left(\frac{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}}\right)}{(\mathrm{I}-a)^{1 / 4}(\mathrm{I}+a)^{7 / 4}}+\frac{3 \mathrm{I} b \operatorname{arctanh}\left(\frac{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}}\right)}{(\mathrm{I}-a)^{1 / 4}(\mathrm{I}+a)^{7 / 4}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}}{x^{2}} \mathrm{~d} x
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}}} \mathrm{~d} x
$$

Optimal (type 3, 257 leaves, 13 steps):

$$
\begin{array}{r}
-\frac{\mathrm{I}(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{3 / 4}}{b}-\frac{\mathrm{I} \arctan \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{2 b}+\frac{\mathrm{I} \arctan \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{2 b} \\
-\frac{\mathrm{I} \ln \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{4 b}+\frac{\mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{4 b}
\end{array}
$$

Result(type 8, 26 leaves):

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}}} \mathrm{~d} x
$$

Problem 61: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}} x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 164 leaves, 5 steps):

$$
-\frac{(\mathrm{I}-a-b x)(1-\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}-a) x(1+\mathrm{I}(b x+a))^{1 / 4}}-\frac{\mathrm{I} b \arctan \left(\frac{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I}(b x+a))^{1 / 4}}\right)}{(\mathrm{I}-a)^{5 / 4}(\mathrm{I}+a)^{3 / 4}}-\frac{\mathrm{I} b \operatorname{arctanh}\left(\frac{(\mathrm{I}-a)^{1 / 4}(1-\mathrm{I}(b x+a))^{1 / 4}}{(\mathrm{I}+a)^{1 / 4}(1+\mathrm{I}(b x+a))^{1 / 4}}\right)}{(\mathrm{I}-a)^{5 / 4}(\mathrm{I}+a)^{3 / 4}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{1}{\sqrt{\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}} x^{2}} \mathrm{~d} x
$$

Problem 62: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 381 leaves, 15 steps):
$\frac{\left(17 \mathrm{I}-36 a-24 \mathrm{I} a^{2}\right)(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{24 b^{3}}+\frac{(3 \mathrm{I}-8 a)(1-\mathrm{I} a-\mathrm{I} b x)^{7 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{12 b^{3}}$

$$
+\frac{x(1-\mathrm{I} a-\mathrm{I} b x)^{7 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{3 b^{2}}+\frac{\left(17 \mathrm{I}-36 a-24 \mathrm{I} a^{2}\right) \arctan \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{16 b^{3}}
$$

$$
-\frac{\left(17 \mathrm{I}-36 a-24 \mathrm{I} a^{2}\right) \arctan \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{16 b^{3}}
$$

$$
\begin{array}{r}
-\frac{\left(17 \mathrm{I}-36 a-24 \mathrm{I} a^{2}\right) \ln \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{32 b^{3}} \\
+\frac{\left(17 \mathrm{I}-36 a-24 \mathrm{I} a^{2}\right) \ln \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{32 b^{3}}
\end{array}
$$

Result(type 8, 30 leaves):

$$
\int \frac{x^{2}}{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 63: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 257 leaves, 13 steps):
$-\frac{\mathrm{I}(1-\mathrm{I} a-\mathrm{I} b x)^{3 / 4}(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}{b}-\frac{3 \mathrm{I} \arctan \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{2 b}+\frac{3 \mathrm{I} \arctan \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}\right) \sqrt{2}}{2 b}$

$$
+\frac{3 \mathrm{I} \ln \left(1-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{4 b}-\frac{3 \mathrm{I} \ln \left(1+\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1 / 4} \sqrt{2}}{(1+\mathrm{I} a+\mathrm{I} b x)^{1 / 4}}+\frac{\sqrt{1-\mathrm{I} a-\mathrm{I} b x}}{\sqrt{1+\mathrm{I} a+\mathrm{I} b x}}\right) \sqrt{2}}{4 b}
$$

Result(type 8, 26 leaves):

$$
\int \frac{1}{\left(\frac{1+\mathrm{I}(b x+a)}{\sqrt{1+(b x+a)^{2}}}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 64: Unable to integrate problem.

$$
\int \mathrm{e}^{n \arctan (b x+a)} x^{2} \mathrm{~d} x
$$

Optimal(type 5, 174 leaves, 4 steps):
$-\frac{(4 a+n)(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{1-\frac{\mathrm{I} n}{2}}}{6 b^{3}}+\frac{x(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{1-\frac{\mathrm{I} n}{2}}}{3 b^{2}}$

$$
+\frac{\left(-6 a^{2}-6 a n-n^{2}+2\right)(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}} \operatorname{hypergeom}\left(\left[\frac{\mathrm{I}}{2} n, 1+\frac{\mathrm{I} n}{2}\right],\left[2+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a}{2}-\frac{\mathrm{I} b x}{2}\right)}{32^{\frac{\mathrm{I}}{2} n} b^{3}(2 \mathrm{I}-n)}
$$

Result(type 8, 15 leaves):

$$
\int \mathrm{e}^{n \arctan (b x+a)} x^{2} \mathrm{~d} x
$$

Problem 65: Unable to integrate problem.

$$
\int \mathrm{e}^{n \arctan (b x+a)} x \mathrm{~d} x
$$

Optimal(type 5, 115 leaves, 3 steps):

$$
\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{1-\frac{\mathrm{I} n}{2}}}{2 b^{2}}+\frac{(2 a+n)(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[\frac{\mathrm{I}}{2} n, 1+\frac{\mathrm{I} n}{2}\right],\left[2+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a}{2}-\frac{\mathrm{I} b x}{2}\right)}{2^{\frac{\mathrm{I}}{2} n} b^{2}(2 \mathrm{I}-n)}
$$

Result(type 8, 13 leaves):

$$
\int \mathrm{e}^{n \arctan (b x+a)} x \mathrm{~d} x
$$

Problem 66: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (b x+a)}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 5, 106 leaves, 2 steps):

$$
-\frac{4 b(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{-1-\frac{\mathrm{I} n}{2}} \operatorname{hypergeom}\left(\left[2,1+\frac{\mathrm{I} n}{2}\right],\left[2+\frac{\mathrm{I} n}{2}\right], \frac{(\mathrm{I}-a)(1-\mathrm{I} a-\mathrm{I} b x)}{(\mathrm{I}+a)(1+\mathrm{I} a+\mathrm{I} b x)}\right)}{(\mathrm{I}+a)^{2}(2 \mathrm{I}-n)}
$$

Result(type 8, 15 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (b x+a)}}{x^{2}} \mathrm{~d} x
$$

Problem 67: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (b x+a)}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 5, 172 leaves, 3 steps):
$-\frac{(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{1-\frac{\mathrm{I} n}{2}}}{2\left(a^{2}+1\right) x^{2}}$

$$
-\frac{2 b^{2}(2 a-n)(1-\mathrm{I} a-\mathrm{I} b x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a+\mathrm{I} b x)^{-1-\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[2,1+\frac{\mathrm{I} n}{2}\right],\left[2+\frac{\mathrm{I} n}{2}\right], \frac{(\mathrm{I}-a)(1-\mathrm{I} a-\mathrm{I} b x)}{(\mathrm{I}+a)(1+\mathrm{I} a+\mathrm{I} b x)}\right)}{(\mathrm{I}-a)(\mathrm{I}+a)^{3}(2 \mathrm{I}-n)}
$$

Result(type 8, 15 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (b x+a)}}{x^{3}} \mathrm{~d} x
$$

Problem 68: Unable to integrate problem.

$$
\int \mathrm{e}^{\arctan (a x)} \mathrm{d} x
$$

Optimal(type 5, 41 leaves, 2 steps):

$$
\left(\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right) 2^{1-\frac{\mathrm{I}}{2}}(1-\mathrm{I} a x)^{1+\frac{\mathrm{I}}{2}} \text { hypergeom }\left(\left[\frac{\mathrm{I}}{2}, 1+\frac{\mathrm{I}}{2}\right],\left[2+\frac{\mathrm{I}}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)
$$

Result(type 8, 7 leaves):
$\int \mathrm{e}^{\arctan (a x)} \mathrm{d} x$

Problem 71: Unable to integrate problem.

$$
\int \mathrm{e}^{2 \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 83 leaves, 3 steps):

$$
\frac{\mathrm{I} 2^{-\mathrm{I}+p}(1-\mathrm{I} a x)^{1+\mathrm{I}+p}\left(a^{2} c x^{2}+c\right)^{p} \text { hypergeom }\left([\mathrm{I}-p, 1+\mathrm{I}+p],[2+\mathrm{I}+p], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a(1+\mathrm{I}+p)\left(x^{2} a^{2}+1\right)^{p}}
$$

Result (type 8, 22 leaves):

$$
\int \mathrm{e}^{2 \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{p} \mathrm{~d} x
$$

Problem 73: Unable to integrate problem.

$$
\int \mathrm{e}^{2 \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 5, 66 leaves, 3 steps):

$$
\frac{\left(\frac{2}{29}+\frac{5 \mathrm{I}}{29}\right) 2^{\frac{5}{2}-\mathrm{I}} c(1-\mathrm{I} a x)^{\frac{5}{2}+\mathrm{I}} \text { hypergeom }\left(\left[\frac{5}{2}+\mathrm{I},-\frac{3}{2}+\mathrm{I}\right],\left[\frac{7}{2}+\mathrm{I}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{a^{2} c x^{2}+c}}{a \sqrt{x^{2} a^{2}+1}}
$$

Result(type 8, 22 leaves):

$$
\int \mathrm{e}^{2} \arctan (a x)\left(a^{2} c x^{2}+c\right)^{3 / 2} \mathrm{~d} x
$$

Problem 75: Unable to integrate problem.

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2}}{\mathrm{e}^{\arctan (a x)}} \mathrm{d} x
$$

Optimal(type 5, 66 leaves, 3 steps):

$$
\frac{\left(-\frac{1}{13}+\frac{5 \mathrm{I}}{13}\right) 2^{\frac{3}{2}+\frac{\mathrm{I}}{2}} c(1-\mathrm{I} a x)^{\frac{5}{2}-\frac{\mathrm{I}}{2}} \text { hypergeom }\left(\left[\frac{5}{2}-\frac{\mathrm{I}}{2},-\frac{3}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{7}{2}-\frac{\mathrm{I}}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{a^{2} c x^{2}+c}}{a \sqrt{x^{2} a^{2}+1}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2}}{\mathrm{e}^{\arctan (a x)}} \mathrm{d} x
$$

Problem 76: Unable to integrate problem.

$$
\int \frac{\sqrt{a^{2} c x^{2}+c}}{\mathrm{e}^{\arctan (a x)}} \mathrm{d} x
$$

Optimal(type 5, 65 leaves, 3 steps):

$$
\frac{\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) 2^{\frac{1}{2}+\frac{\mathrm{I}}{2}}(1-\mathrm{I} a x)^{\frac{3}{2}-\frac{\mathrm{I}}{2}} \text { hypergeom }\left(\left[\frac{3}{2}-\frac{\mathrm{I}}{2},-\frac{1}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{5}{2}-\frac{\mathrm{I}}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{a^{2} c x^{2}+c}}{a \sqrt{x^{2} a^{2}+1}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\sqrt{a^{2} c x^{2}+c}}{\mathrm{e}^{\arctan (a x)}} \mathrm{d} x
$$

Problem 78: Unable to integrate problem.

$$
\int \frac{a^{2} c x^{2}+c}{\mathrm{e}^{2} \arctan (a x)} \mathrm{d} x
$$

Optimal(type 5, 43 leaves, 2 steps):

$$
\left(-\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right) 2^{1+\mathrm{I}} c(1-\mathrm{I} a x)^{2-\mathrm{I}} \text { hypergeom }\left([2-\mathrm{I},-1-\mathrm{I}],[3-\mathrm{I}], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)
$$

a
Result(type 8, 22 leaves):

$$
\int \frac{a^{2} c x^{2}+c}{\mathrm{e}^{2} \arctan (a x)} \mathrm{d} x
$$

Problem 79: Unable to integrate problem.

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2}}{\mathrm{e}^{2 \arctan (a x)}} \mathrm{d} x
$$

Optimal(type 5, 66 leaves, 3 steps):

$$
\frac{\left(-\frac{2}{29}+\frac{5 \mathrm{I}}{29}\right) 2^{\frac{5}{2}+\mathrm{I}} c(1-\mathrm{I} a x)^{\frac{5}{2}-\mathrm{I}} \text { hypergeom }\left(\left[\frac{5}{2}-\mathrm{I},-\frac{3}{2}-\mathrm{I}\right],\left[\frac{7}{2}-\mathrm{I}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{a^{2} c x^{2}+c}}{a \sqrt{x^{2} a^{2}+1}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{\left(a^{2} c x^{2}+c\right)^{3 / 2}}{\mathrm{e}^{2 \arctan (a x)}} \mathrm{d} x
$$

Problem 82: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2} a^{2}+1\right)^{3 / 2}}{(1+\mathrm{I} a x)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 57 leaves, 5 steps):

$$
\frac{2 \mathrm{I}(1-\mathrm{I} a x)^{3 / 2}}{3 a(1+\mathrm{I} a x)^{3 / 2}}+\frac{\operatorname{arcsinh}(a x)}{a}-\frac{2 \mathrm{I} \sqrt{1-\mathrm{I} a x}}{a \sqrt{1+\mathrm{I} a x}}
$$

Result(type 3, 261 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I}\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{3 a^{5}\left(x-\frac{\mathrm{I}}{a}\right)^{4}}+\frac{\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{3 a^{4}\left(x-\frac{\mathrm{I}}{a}\right)^{3}}+\frac{2 \mathrm{I}\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{5 / 2}}{3 a^{3}\left(x-\frac{\mathrm{I}}{a}\right)^{2}} \\
& \quad-\frac{2 \mathrm{I}\left(\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)\right)^{3 / 2}}{3 a}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)} x+\frac{\ln \left(\frac{\mathrm{I} a+\left(x-\frac{\mathrm{I}}{a}\right) a^{2}}{\sqrt{a^{2}}}+\sqrt{\left(x-\frac{\mathrm{I}}{a}\right)^{2} a^{2}+2 \mathrm{I} a\left(x-\frac{\mathrm{I}}{a}\right)}\right)}{\sqrt{a^{2}}}
\end{aligned}
$$

Problem 90: Unable to integrate problem.

$$
\int \mathrm{e}^{n \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{2} \mathrm{~d} x
$$

Optimal(type 5, 66 leaves, 2 steps):

$$
-\frac{2^{3-\frac{\mathrm{I} n}{2}} c^{2}(1-\mathrm{I} a x)^{3+\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[-2+\frac{\mathrm{I} n}{2}, 3+\frac{\mathrm{I} n}{2}\right],\left[4+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a(6 \mathrm{I}-n)}
$$

Result(type 8, 22 leaves):

$$
\int \mathrm{e}^{n \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{2} \mathrm{~d} x
$$

Problem 91: Unable to integrate problem.

$$
\int \mathrm{e}^{n \arctan (a x)} \mathrm{d} x
$$

Optimal(type 5, 61 leaves, 2 steps):

$$
-\frac{2^{1-\frac{\mathrm{I} n}{2}}(1-\mathrm{I} a x)^{1+\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[\frac{\mathrm{I}}{2} n, 1+\frac{\mathrm{I} n}{2}\right],\left[2+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a(2 \mathrm{I}-n)}
$$

Result(type 8, 9 leaves):

$$
\int \mathrm{e}^{n \arctan (a x)} \mathrm{d} x
$$

Problem 93: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{x^{2}\left(a^{2} c x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 5, 78 leaves, 5 steps):

$$
\frac{\mathrm{I} a \mathrm{e}^{n \arctan (a x)}(\mathrm{I}+n)}{c n}-\frac{\mathrm{e}^{n \arctan (a x)}}{c x}-\frac{2 \mathrm{I} a \mathrm{e}^{n \arctan (a x)} \operatorname{hypergeom}\left(\left[1,-\frac{\mathrm{I}}{2} n\right],\left[1-\frac{\mathrm{I} n}{2}\right],-1+\frac{2 \mathrm{I}}{a x+\mathrm{I}}\right)}{c}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{x^{2}\left(a^{2} c x^{2}+c\right)} \mathrm{d} x
$$

Problem 94: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{3}}{\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 329 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{(1-\mathrm{I} a x)^{-1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{-1-\frac{\mathrm{I} n}{2}}}{a^{4} c^{2}(2-\mathrm{I} n)}+\frac{2 \mathrm{I}(1-\mathrm{I} a x)^{1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{-1-\frac{\mathrm{I} n}{2}}}{a^{4} c^{2} n\left(n^{2}+4\right)}+\frac{2(1-\mathrm{I} a x)^{\frac{\mathrm{I}}{2} n}(1+\mathrm{I} a x)^{-1-\frac{\mathrm{I} n}{2}}}{a^{4} c^{2} n(2 \mathrm{I}+n)} \\
& -\frac{3(1-\mathrm{I} a x)^{-1+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{1-\frac{\mathrm{I} n}{2}}}{a^{4} c^{2}(2-\mathrm{I} n)}+\frac{3(1-\mathrm{I} a x)^{-1+\frac{\mathrm{I} n}{2}}}{a^{4} c^{2}(2-\mathrm{I} n)(1+\mathrm{I} a x)^{\frac{\mathrm{I}}{2} n}}-\frac{3(1-\mathrm{I} a x)^{\frac{1}{2} n}}{a^{4} c^{2} n(2 \mathrm{I}+n)(1+\mathrm{I} a x)^{\frac{\mathrm{I}}{2} n}} \\
& +\frac{2^{2-\frac{\mathrm{I} n}{2}}(1-\mathrm{I} a x)^{-1+\frac{\mathrm{I} n}{2}} \operatorname{hypergeom}\left(\left[-1+\frac{\mathrm{I} n}{2},-1+\frac{\mathrm{I} n}{2}\right],\left[\frac{\mathrm{I}}{2} n\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a^{4} c^{2}(2-\mathrm{I} n)}
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{3}}{\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Problem 98: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{3}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Optimal(type 5, 247 leaves, 5 steps):

$$
\frac{x^{2}(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}} \sqrt{x^{2} a^{2}+1}}{3 a^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}}\left(4-\mathrm{I} n-n^{2}+a(1+\mathrm{I} n) n x\right) \sqrt{x^{2} a^{2}+1}}{6 a^{4}(1+\mathrm{I} n) \sqrt{a^{2} c x^{2}+c}}
$$

$$
+\frac{2^{-\frac{1}{2}-\frac{\mathrm{I} n}{2}} n\left(-n^{2}+5\right)(1-\mathrm{I} a x)^{\frac{3}{2}+\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[\frac{1}{2}+\frac{\mathrm{I} n}{2}, \frac{3}{2}+\frac{\mathrm{I} n}{2}\right],\left[\frac{5}{2}+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{x^{2} a^{2}+1}}{3 a^{4}\left(4 n-\mathrm{I}\left(-n^{2}+3\right)\right) \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{3}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Problem 99: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{2}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Optimal(type 5, 219 leaves, 5 steps):

$$
\begin{gathered}
-\frac{(1+\mathrm{I} n)(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}} \sqrt{x^{2} a^{2}+1}}{2 a^{3}(\mathrm{I}+n) \sqrt{a^{2} c x^{2}+c}}+\frac{x(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}} \sqrt{x^{2} a^{2}+1}}{2 a^{2} \sqrt{a^{2} c x^{2}+c}} \\
-\frac{\mathrm{I} 2^{\frac{1}{2}-\frac{\mathrm{I} n}{2}}\left(-n^{2}+1\right)(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}} \operatorname{hypergeom}\left(\left[\frac{1}{2}+\frac{\mathrm{I} n}{2},-\frac{1}{2}+\frac{\mathrm{I} n}{2}\right],\left[\frac{3}{2}+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right) \sqrt{x^{2} a^{2}+1}}{a^{3}\left(n^{2}+1\right) \sqrt{a^{2} c x^{2}+c}}
\end{gathered}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{2}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Problem 100: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{x^{3} \sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Optimal(type 5, 218 leaves, 6 steps):
$-\frac{(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}} \sqrt{x^{2} a^{2}+1}}{2 x^{2} \sqrt{a^{2} c x^{2}+c}}-\frac{a n(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{\frac{1}{2}-\frac{\mathrm{I} n}{2}} \sqrt{x^{2} a^{2}+1}}{2 x \sqrt{a^{2} c x^{2}+c}}$

$$
+\frac{a^{2}\left(-n^{2}+1\right)(1-\mathrm{I} a x)^{\frac{1}{2}+\frac{\mathrm{I} n}{2}}(1+\mathrm{I} a x)^{-\frac{1}{2}-\frac{\mathrm{I} n}{2}} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{\mathrm{I} n}{2}\right],\left[\frac{3}{2}+\frac{\mathrm{I} n}{2}\right], \frac{1-\mathrm{I} a x}{1+\mathrm{I} a x}\right) \sqrt{x^{2} a^{2}+1}}{(1+\mathrm{I} n) \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{x^{3} \sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Problem 103: Unable to integrate problem.

$$
\int \mathrm{e}^{n \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{1 / 3} \mathrm{~d} x
$$

Optimal(type 5, 86 leaves, 3 steps):

$$
-\frac{32^{\frac{4}{3}-\frac{\mathrm{I} n}{2}}(1-\mathrm{I} a x)^{\frac{4}{3}+\frac{\mathrm{I} n}{2}}\left(a^{2} c x^{2}+c\right)^{1 / 3} \text { hypergeom }\left(\left[\frac{4}{3}+\frac{\mathrm{I} n}{2},-\frac{1}{3}+\frac{\mathrm{I} n}{2}\right],\left[\frac{7}{3}+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a(8 \mathrm{I}-3 n)\left(x^{2} a^{2}+1\right)^{1 / 3}}
$$

Result(type 8, 22 leaves):

$$
\int \mathrm{e}^{n \arctan (a x)}\left(a^{2} c x^{2}+c\right)^{1 / 3} \mathrm{~d} x
$$

Problem 104: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{\left(a^{2} c x^{2}+c\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 86 leaves, 3 steps):

$$
-\frac{32^{\frac{2}{3}-\frac{\mathrm{I} n}{2}}(1-\mathrm{I} a x)^{\frac{2}{3}+\frac{\mathrm{I} n}{2}}\left(x^{2} a^{2}+1\right)^{1 / 3} \text { hypergeom }\left(\left[\frac{2}{3}+\frac{\mathrm{I} n}{2}, \frac{1}{3}+\frac{\mathrm{I} n}{2}\right],\left[\frac{5}{3}+\frac{\mathrm{I} n}{2}\right], \frac{1}{2}-\frac{\mathrm{I} a x}{2}\right)}{a(4 \mathrm{I}-3 n)\left(a^{2} c x^{2}+c\right)^{1 / 3}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)}}{\left(a^{2} c x^{2}+c\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 105: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Optimal(type 6, 43 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellFI }\left(1+m, 2+\frac{\mathrm{I} n}{2}, 2-\frac{\mathrm{I} n}{2}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right)}{c^{2}(1+m)}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\left(a^{2} c x^{2}+c\right)^{2}} \mathrm{~d} x
$$

Problem 106: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Optimal(type 6, 63 leaves, 3 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(1+m, \frac{1}{2}+\frac{\mathrm{I} n}{2}, \frac{1}{2}-\frac{\mathrm{I} n}{2}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right) \sqrt{x^{2} a^{2}+1}}{(1+m) \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\sqrt{a^{2} c x^{2}+c}} \mathrm{~d} x
$$

Problem 107: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 66 leaves, 3 steps):

$$
\frac{x^{1+m} \text { AppellF } 1\left(1+m, \frac{5}{2}+\frac{\mathrm{I} n}{2}, \frac{5}{2}-\frac{\mathrm{I} n}{2}, 2+m,-\mathrm{I} a x, \mathrm{I} a x\right) \sqrt{x^{2} a^{2}+1}}{c^{2}(1+m) \sqrt{a^{2} c x^{2}+c}}
$$

Result(type 8, 25 leaves):

$$
\int \frac{\mathrm{e}^{n \arctan (a x)} x^{m}}{\left(a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Test results for the 44 problems in "5.3.7 Inverse tangent functions.txt"
Problem 8: Unable to integrate problem.

$$
\int x^{9 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right) \mathrm{d} x
$$

Optimal(type 4, 190 leaves, 6 steps):

$$
\frac{2 x^{11 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{11}+\frac{36 d x^{5 / 2} \sqrt{x^{2} e+d}}{847(-e)^{3 / 2}}+\frac{4 x^{9 / 2} \sqrt{x^{2} e+d}}{121 \sqrt{-e}}+\frac{60 d^{2} \sqrt{x} \sqrt{x^{2} e+d}}{847(-e)^{5 / 2}}
$$

$$
+\frac{30 d^{11} / 4 \sqrt{\cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right), \frac{\sqrt{2}}{2}\right) \sqrt{-e}(\sqrt{d}+x \sqrt{e}) \sqrt{\frac{x^{2} e+d}{(\sqrt{d}+x \sqrt{e})^{2}}}}{847 \cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right) e^{13 / 4} \sqrt{x^{2} e+d}}
$$

Result(type 8, 23 leaves):

$$
\int x^{9 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right) d x
$$

Problem 9: Unable to integrate problem.

$$
\int x^{5 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right) d x
$$

Optimal(type 4, 168 leaves, 5 steps):

$$
\frac{2 x^{7 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{7}+\frac{4 x^{5 / 2} \sqrt{x^{2} e+d}}{49 \sqrt{-e}}+\frac{20 d \sqrt{x} \sqrt{x^{2} e+d}}{147(-e)^{3 / 2}}
$$

$$
-\frac{10 d^{7 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right), \frac{\sqrt{2}}{2}\right) \sqrt{-e}(\sqrt{d}+x \sqrt{e}) \sqrt{\frac{x^{2} e+d}{(\sqrt{d}+x \sqrt{e})^{2}}}}{147 \cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right) e^{9 / 4} \sqrt{x^{2} e+d}}
$$

Result(type 8, 23 leaves):

$$
\int x^{5 / 2} \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right) d x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{\arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{x^{11 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 173 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{2 \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{9 x^{9 / 2}}-\frac{20(-e)^{3 / 2} \sqrt{x^{2} e+d}}{189 d^{2} x^{3 / 2}}-\frac{4 \sqrt{-e} \sqrt{x^{2} e+d}}{63 d x^{7 / 2}} \\
& \quad+\frac{10 e^{7 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right), \frac{\sqrt{2}}{2}\right) \sqrt{-e}(\sqrt{d}+x \sqrt{e}) \sqrt{\frac{x^{2} e+d}{(\sqrt{d}+x \sqrt{e})^{2}}}}{189 \cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right) d^{9} / 4 \sqrt{x^{2} e+d}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{x^{11 / 2}} \mathrm{~d} x
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{\arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{x^{9 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 315 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{2 \arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{7 x^{7 / 2}}-\frac{4 \sqrt{-e} \sqrt{x^{2} e+d}}{35 d x^{5 / 2}}-\frac{12(-e)^{3 / 2} \sqrt{x^{2} e+d}}{35 d^{2} \sqrt{x}}-\frac{12 e^{3 / 2} \sqrt{-e} \sqrt{x} \sqrt{x^{2} e+d}}{35 d^{2}(\sqrt{d}+x \sqrt{e})} \\
& +\frac{12 e^{5 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right), \frac{\sqrt{2}}{2}\right) \sqrt{-e}(\sqrt{d}+x \sqrt{e}) \sqrt{\frac{x^{2} e+d}{(\sqrt{d}+x \sqrt{e})^{2}}}}{35 \cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right) d^{7 / 4} \sqrt{x^{2} e+d}}
\end{aligned}
$$

$$
-\frac{6 e^{5 / 4} \sqrt{\cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right), \frac{\sqrt{2}}{2}\right) \sqrt{-e}(\sqrt{d}+x \sqrt{e}) \sqrt{\frac{x^{2} e+d}{(\sqrt{d}+x \sqrt{e})^{2}}}}{35 \cos \left(2 \arctan \left(\frac{e^{1 / 4} \sqrt{x}}{d^{1 / 4}}\right)\right) d^{7 / 4} \sqrt{x^{2} e+d}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\arctan \left(\frac{x \sqrt{-e}}{\sqrt{x^{2} e+d}}\right)}{x^{9 / 2}} \mathrm{~d} x
$$

Problem 15: Result more than twice size of optimal antiderivative

$$
\int\left(\frac{\pi}{2}-\operatorname{arccot}(\cot (b x+a))\right) \mathrm{d} x
$$

Optimal(type 3, 20 leaves, 2 steps):

$$
-\left(\frac{\pi}{2}-\operatorname{arccot}(\cot (b x+a))\right)^{2}
$$

$2 b$
Result(type 3, 50 leaves):

$$
\frac{\pi x}{2}-\frac{-\left(\frac{\pi}{2}-\operatorname{arccot}(\cot (b x+a))\right) \operatorname{arccot}(\cot (b x+a))-\frac{\left(\frac{\pi}{2}-\operatorname{arccot}(\cot (b x+a))\right)^{2}}{2}}{b}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int x \arctan (c+d \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 257 leaves, 9 steps):
$\frac{x^{2} \arctan (c+d \tan (b x+a))}{2}+\frac{\mathrm{I} x^{2} \ln \left(1+\frac{(1+\mathrm{I} c+d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+\mathrm{I} c-d}\right)}{4}-\frac{\mathrm{I} x^{2} \ln \left(1+\frac{(c+\mathrm{I}(1-d)) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{c+\mathrm{I}(1+d)}\right)}{4}$
$+\frac{x \operatorname{polylog}\left(2,-\frac{(1+\mathrm{I} c+d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+\mathrm{I} c-d}\right)}{4 b}-\frac{x \operatorname{polylog}\left(2,-\frac{(c+\mathrm{I}(1-d)) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{c+\mathrm{I}(1+d)}\right)}{4 b}+\frac{\mathrm{I} \operatorname{poly} \log \left(3,-\frac{(1+\mathrm{I} c+d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+\mathrm{I} c-d}\right)}{8 b^{2}}$
$-\frac{\mathrm{I} \text { polylog }\left(3,-\frac{(c+\mathrm{I}(1-d)) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{c+\mathrm{I}(1+d)}\right)}{8 b^{2}}$

Result(type ?, 7719 leaves): Display of huge result suppressed!
Problem 18: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \arctan (c+(-1+\mathrm{I} c) \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 124 leaves, 7 steps):
$\frac{b x^{4}}{12}+\frac{x^{3} \arctan (c-(1-\mathrm{I} c) \tan (b x+a))}{3}+\frac{\mathrm{I} x^{3} \ln \left(1+\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{6}+\frac{x^{2} \operatorname{polylog}\left(2,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}+\frac{\mathrm{I} x \operatorname{poly} \log \left(3,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b^{2}}$

$$
-\frac{\operatorname{polylog}\left(4,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{3}}
$$

Result(type 4, 1532 leaves):

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)^{2}}{6}+\frac{\mathrm{I} x^{3} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{3}+\frac{\mathrm{I} \ln (\mathrm{I}+c) x^{3}}{6}
$$

$$
+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{12}+\frac{a^{2} \operatorname{dilog}\left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{3}}-\frac{\operatorname{poly} \log \left(2,-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right) a^{2}}{4 b^{3}}+\frac{a^{2} \operatorname{dilog}\left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{3}}
$$

$$
+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{3}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{12}
$$

$$
+\frac{x^{2} \operatorname{poly} \log \left(2,-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{4 b}+\frac{\mathrm{I} x^{3} \ln \left(1+\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{6}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{3}}{12}
$$

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{12}+\frac{\mathrm{I} x \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b^{2}}
$$

$$
+\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}
$$

$$
-\frac{x^{3} \pi \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}+\frac{x^{3} \pi}{6}
$$

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{12}-\frac{\mathrm{I} \ln \left(1+\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right) x a^{2}}{2 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b^{2}}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int-x^{2} \arctan (-c-(1-\mathrm{I} c) \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 126 leaves, 7 steps):

$$
\begin{aligned}
\frac{b x^{4}}{12} & -\frac{x^{3} \arctan (-c-(1-\mathrm{I} c) \cot (b x+a))}{3}+\frac{\mathrm{I} x^{3} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{6}+\frac{x^{2} \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}+\frac{\mathrm{I} x \operatorname{poly} \log \left(3, \mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b^{2}} \\
& -\frac{\operatorname{poly} \log \left(4, \mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{3}}
\end{aligned}
$$

Result(type 4, 1531 leaves):

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{\mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{2}}{6}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{12}+\frac{\mathrm{I} x^{3} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{3}+\frac{\mathrm{I} \ln (\mathrm{I}+c) x^{3}}{6}
$$

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{12}-\frac{\operatorname{polylog}\left(2, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right) a^{2}}{4 b^{3}}+\frac{a^{2} \operatorname{dilog}\left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}
$$

$$
+\frac{x^{2} \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{12}
$$

$$
-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{12}+\frac{\mathrm{I} x \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b^{2}}-\frac{\mathrm{I} \ln \left(1-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right) a^{3}}{3 b^{3}}-\frac{\mathrm{I} a^{3} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{6 b^{3}}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b^{2}}-\frac{\operatorname{polylog}\left(4,-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{8 b^{3}}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}+\frac{b x^{4}}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)}{12} \\
& -\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{\mathrm{I}(b x+a)}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)}{12}-\frac{\mathrm{I} \ln \left(1+\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right) a^{3}}{3 b^{3}}-\frac{\mathrm{I} a^{3} \ln \left(-\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{6 b^{3}}+\frac{\mathrm{I} a^{3} \ln \left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{3}} \\
& +\frac{\mathrm{I} a^{3} \ln \left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{3}}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}+1}\right)^{2}}{12}-\frac{\mathrm{I} x^{3} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{6}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} a^{3} \ln \left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}+\frac{\mathrm{I} a^{3} \ln \left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12} \\
& -\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12} \\
& -\frac{x^{3} \pi \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{3}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12}-\frac{\operatorname{polylog}\left(4, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{8 b^{3}} \\
& \left.+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{Ie}}{} \mathrm{e}^{\mathrm{I}(b x+a)}(\mathrm{I}+c)\right.}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right){ }^{12}+\frac{x^{3} \pi}{6}+\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{Ie} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right) x}{2 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{Ie} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right) x}{2 b^{2}}+\frac{b x^{4}}{12} \\
& +\frac{a^{2} \operatorname{dilog}\left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}-\frac{\mathrm{I} x^{3} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{6}+\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{12}-\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{12}+\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{12}+\frac{x^{3} \pi \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{12} \\
& +\frac{x^{3} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}{ }^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{12}-\frac{\mathrm{I} \ln \left(1-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right) x a^{2}}{2 b^{2}}+\frac{\mathrm{I} x^{3} \ln \left(1-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{6}
\end{aligned}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int-x \arctan (-c-(1-\mathrm{I} c) \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 101 leaves, 6 steps):

$$
\frac{b x^{3}}{6}-\frac{x^{2} \arctan (-c-(1-\mathrm{I} c) \cot (b x+a))}{2}+\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4}+\frac{x \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}+\frac{\mathrm{I} \operatorname{poly} \log \left(3, \mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{2}}
$$

Result(type 4, 1496 leaves):
$\frac{\pi x^{2} \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}$
$-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}+\frac{\pi x^{2}}{4}-\frac{\mathrm{I} x^{2} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{4}$
$\left.\left.-\frac{\pi x^{2} \operatorname{csgn}(\mathrm{I}(\mathrm{I}+c)) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{\mathrm{I}(b x+a)}-1}\right)^{2}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}}{} \mathrm{e}^{\mathrm{I}(b x+a)}(\mathrm{I}+c)\right.}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}\right) \quad 8 \quad-\frac{\mathrm{I} a \ln \left(1-\mathrm{Ie} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right) x}{2 b}$
$-\frac{\mathrm{I} a \ln \left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right) x}{2 b}+\frac{\mathrm{I} \ln \left(1-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right) x a}{2 b}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}$
$+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}+\frac{\mathrm{I} x^{2} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{2}+\frac{\mathrm{I} \ln (\mathrm{I}+c) x^{2}}{4}$
$-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}$
$+\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{b x^{3}}{6}$
$+\frac{\mathrm{I} p o l y \log \left(3, \mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{8 b^{2}}+\frac{x \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b}+\frac{a \operatorname{poly} \log \left(2, \mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{4 b^{2}}-\frac{a \operatorname{dilog}\left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}$
$-\frac{a \operatorname{dilog}\left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}$
$+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{\mathrm{I} \ln \left(1-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right) a^{2}}{4 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{4 b^{2}}-\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}$
$-\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{-\mathrm{I} c}\right)}{2 b^{2}}-\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}$
$+\frac{\pi x^{2} \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(\mathrm{I}+c)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}+\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{3}}{8}+\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right)}{4}$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int-x \arctan (-c-(-1-\mathrm{I} c) \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 100 leaves, 6 steps):

$$
-\frac{b x^{3}}{6}-\frac{x^{2} \arctan (-c+(1+\mathrm{I} c) \cot (b x+a))}{2}-\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4}-\frac{x \operatorname{polylog}\left(2,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}-\frac{\mathrm{I} \operatorname{polylog}\left(3,-\mathrm{I} c \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{2}}
$$

Result(type 4, 1497 leaves):

$$
\frac{\pi x^{2}}{4}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}+\frac{\mathrm{I} x^{2} \ln \left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{4}
$$

$$
\begin{aligned}
& -\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}-\frac{\mathrm{I} \ln (c-\mathrm{I}) x^{2}}{4} \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}-\frac{\mathrm{I} \ln \left(1+\mathrm{Ie}^{2 \mathrm{I}(b x+a)} c\right) x a}{2 b}+\frac{\mathrm{I} a \ln \left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b}
\end{aligned}
$$

$$
+\frac{\mathrm{I} a \ln \left(1-\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right) x}{2 b}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}+\frac{a \operatorname{dilog}\left(1+\mathrm{I} \mathrm{I}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}
$$

$$
+\frac{a \operatorname{dilog}\left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}-\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}(\mathrm{I}(c-\mathrm{I})) \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}
$$

$$
-\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}-\frac{a \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b^{2}}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}
$$

$$
-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{\mathrm{I}(b x+a)}-1}\right)^{3}}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{3}}{8}-\frac{x \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{4 b}-\frac{\mathrm{I} \operatorname{polylog}\left(3,-\mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right)}{8 b^{2}}
$$

$$
-\frac{\mathrm{I} x^{2} \ln \left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)}{2}-\frac{b x^{3}}{6}+\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{Ie}^{\mathrm{I}(b x+a)} \sqrt{\mathrm{I} c}\right)}{2 b^{2}}+\frac{x^{2} \pi \operatorname{csgn}(\mathrm{I}(c-\mathrm{I})) \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}
$$

$$
\begin{aligned}
& \left.+\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}^{2 \mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}}{} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})\right.}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2} \\
& -\frac{x^{2} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}+\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}-\frac{\mathrm{I} \ln \left(1+\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)} c\right) a^{2}}{4 b^{2}} \\
& -\frac{\mathrm{I} a^{2} \ln \left(-\mathrm{e}^{2 \mathrm{I}(b x+a)} c+\mathrm{I}\right)}{4 b^{2}}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8}-\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}\right)}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{e}^{2 \mathrm{I}(b x+a)} c-\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)}{8} \\
& +\frac{x^{2} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(c-\mathrm{I})}{\mathrm{e}^{2 \mathrm{I}(b x+a)}-1}\right)^{2}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)^{3}}{8}-\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 \mathrm{I}(b x+a)}\right)}{8} \\
& +\frac{\pi x^{2} \operatorname{csgn}\left(\mathrm{I}^{\mathrm{I}(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)^{2}}{4}
\end{aligned}
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \arctan (c+d \tanh (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 305 leaves, 11 steps):
$\frac{x^{3} \arctan (c+d \tanh (b x+a))}{3}+\frac{\mathrm{I} x^{3} \ln \left(1+\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{6}-\frac{\mathrm{I} x^{3} \ln \left(1+\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{6}+\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
-\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}-\frac{\mathrm{I} x \operatorname{polylog}\left(3,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b^{2}}+\frac{\mathrm{I} x \operatorname{poly} \log \left(3,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b^{2}}
$$

$$
+\frac{\mathrm{I} \operatorname{poly} \log \left(4,-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{8 b^{3}}-\frac{\mathrm{I} \operatorname{polylog}\left(4,-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{8 b^{3}}
$$

Result(type ?, 6989 leaves): Display of huge result suppressed!
Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \arctan (c-(\mathrm{I}-c) \tanh (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 68 leaves, 5 steps):

$$
\frac{\mathrm{I} b x^{2}}{2}+x \arctan (c-(\mathrm{I}-c) \tanh (b x+a))-\frac{\mathrm{I} x \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{2}-\frac{\mathrm{I} \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b}
$$

Result(type 4, 1350 leaves):

```
\(\frac{\operatorname{Idilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right)}{4 b(c-\mathrm{I})(\mathrm{I}-c)}+\frac{\operatorname{dilog}\left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right) c}{2 b(c-\mathrm{I})(\mathrm{I}-c)}-\frac{\ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I})^{2} c}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(+\frac{\operatorname{dilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right) c}{2 b(c-\mathrm{I})(\mathrm{I}-c)}-\frac{\operatorname{dilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right) c}{2 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(+\frac{\arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I})}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}-\frac{\arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I})}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}\)
\(-\frac{\mathrm{I} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right)}{4 b(c-\mathrm{I})(\mathrm{I}-c)}+\frac{\mathrm{I} \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I})^{2}}{8 b(c-\mathrm{I})(\mathrm{I}-c)}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right)}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(-\frac{\mathrm{I} \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I})^{2} c^{2}}{8 b(c-\mathrm{I})(\mathrm{I}-c)}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(+\frac{\mathrm{I} \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
    \(+\frac{\mathrm{I} \ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(-\frac{\mathrm{I} \ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}+\frac{2 \mathrm{I} \arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}) c}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}\)
\(-\frac{2 \mathrm{I} \arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}\)
\(+\underline{\ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right) c}\)
\(+\frac{2 b(c-\mathrm{I})(\mathrm{I}-c)}{}\)
\(+\frac{\ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c}{2 b(c-\mathrm{I})(\mathrm{I}-c)}-\frac{\ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c}{2 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(-\frac{\arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}) c^{2}}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}+\frac{\arctan ((c-\mathrm{I}) \tanh (b x+a)+c) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I}) c^{2}}{b(c-\mathrm{I})(2 \mathrm{I}-2 c)}\)
\(-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}-\frac{\mathrm{I} \ln ((c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}) \ln \left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right)}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
\(-\frac{\mathrm{I} \ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c-\mathrm{I}}{-2 \mathrm{I}+2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I})}{4 b(c-\mathrm{I})(\mathrm{I}-c)}+\frac{\mathrm{I} \ln \left(\frac{(c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I}}{2 c}\right) \ln ((c-\mathrm{I}) \tanh (b x+a)-c+\mathrm{I})}{4 b(c-\mathrm{I})(\mathrm{I}-c)}\)
```

$$
+\frac{\mathrm{I} \operatorname{dilog}\left(-\frac{\mathrm{I}}{2}((c-\mathrm{I}) \tanh (b x+a)+c+\mathrm{I})\right) c^{2}}{4 b(c-\mathrm{I})(\mathrm{I}-c)}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \arctan (c+d \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 150 leaves, 7 steps):
$x \arctan (c+d \operatorname{coth}(b x+a))+\frac{\mathrm{I} x \ln \left(1-\frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{2}-\frac{\mathrm{I} x \ln \left(1-\frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{2}+\frac{\mathrm{I} p o l y \log \left(2, \frac{(\mathrm{I}-c-d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}-c+d}\right)}{4 b}$

$$
-\frac{\mathrm{I} \text { polylog }\left(2, \frac{(\mathrm{I}+c+d) \mathrm{e}^{2 b x+2 a}}{\mathrm{I}+c-d}\right)}{4 b}
$$

Result(type 4, 349 leaves):
$-\frac{\arctan (c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)-d)}{2 b}+\frac{\arctan (c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)+d)}{2 b}$
$-\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{-d \operatorname{coth}(b x+a)+\mathrm{I}-c}{\mathrm{I}-c-d}\right)}{4 b}+\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c+d}\right)}{4 b}$
$-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{-d \operatorname{coth}(b x+a)+\mathrm{I}-c}{\mathrm{I}-c-d}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c+d}\right)}{4 b}+\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)+d) \ln \left(\frac{-d \operatorname{coth}(b x+a)+\mathrm{I}-c}{\mathrm{I}-c+d}\right)}{4 b}$

$$
-\frac{\mathrm{I} \ln (d \operatorname{coth}(b x+a)+d) \ln \left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c-d}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{-d \operatorname{coth}(b x+a)+\mathrm{I}-c}{\mathrm{I}-c+d}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+c+\mathrm{I}}{\mathrm{I}+c-d}\right)}{4 b}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \arctan (c+(\mathrm{I}+c) \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 116 leaves, 7 steps):
$-\frac{\mathrm{I} b x^{4}}{12}+\frac{x^{3} \arctan (c+(\mathrm{I}+c) \operatorname{coth}(b x+a))}{3}+\frac{\mathrm{I} x^{3} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{6}+\frac{\mathrm{I} x^{2} \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b}-\frac{\mathrm{I} x \operatorname{poly} \log \left(3, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b^{2}}$

$$
+\frac{\operatorname{Ipolylog}\left(4, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}}
$$

Result(type 4, 1553 leaves):

$$
\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)
$$

$+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)}{12}-\frac{\mathrm{I} x \operatorname{polylog}\left(3, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b^{2}}$
$-\frac{\mathrm{I} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) a^{3}}{3 b^{3}}-\frac{\mathrm{I} \operatorname{polylog}\left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) a^{2}}{4 b^{3}}+\frac{\mathrm{I} a^{3} \ln \left(1-\mathrm{Ie} \mathrm{e}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}+\frac{\mathrm{I} a^{3} \ln \left(1+\mathrm{Ie}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}$
$+\frac{\mathrm{I} a^{2} \operatorname{dilog}\left(1-\mathrm{Ie} \mathrm{e}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}+\frac{\mathrm{I} a^{2} \operatorname{dilog}\left(1+\mathrm{Ie}^{b x+a} \sqrt{-\mathrm{I} c}\right)}{2 b^{3}}+\frac{\pi x^{3} \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}$
$-\frac{\pi x^{3} \operatorname{csgn}\left(\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{\pi x^{3} \operatorname{csgn}\left(\frac{2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3}}$
$+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3}}{12}+\frac{\mathrm{I} x^{3} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{6}-\frac{\mathrm{I} \ln \left(1-\mathrm{I} c \mathrm{e}^{2 b x+2 a}\right) x a^{2}}{2 b^{2}}+\frac{\mathrm{I} a^{2} \ln \left(1-\mathrm{Ie} \mathrm{e}^{b x+a} \sqrt{-\mathrm{I} c}\right) x}{2 b^{2}}$
$+\frac{\mathrm{I} a^{2} \ln \left(1+\mathrm{Ie}^{b x+a} \sqrt{-\mathrm{I} c}\right) x}{2 b^{2}}-\frac{\mathrm{I} c a^{4}}{4 b^{3}(\mathrm{I}+c)}-\frac{\mathrm{I} c b x^{4}}{12(\mathrm{I}+c)}-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right)}{12}$
$+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}-\frac{a^{3} \ln \left(\mathrm{e}^{b x+a}\right)}{3 b^{3}(\mathrm{I}+c)}+\frac{x a^{3}}{3 b^{2}(\mathrm{I}+c)}-\frac{\mathrm{I} a^{3} \ln \left(\mathrm{e}^{2 b x+2 a} c+\mathrm{I}\right)}{6 b^{3}}+\frac{\mathrm{I} c a^{3} \ln \left(\mathrm{e}^{b x+a}\right)}{3 b^{3}(\mathrm{I}+c)}$
$-\frac{\mathrm{I} c x a^{3}}{3 b^{2}(\mathrm{I}+c)}+\frac{x^{3} \pi}{6}-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I} \mathrm{e}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}$
$-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3}}{12}+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3}}{12}$
$+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}-1}\right)}{12}+\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}$
$-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{\mathrm{I}\left(2 \mathrm{I}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}+\frac{a^{4}}{4 b^{3}(\mathrm{I}+c)}+\frac{b x^{4}}{12(\mathrm{I}+c)}-\frac{\mathrm{I} x^{3} \ln \left(2 \mathrm{e}^{2 b x+2 a} c+2 \mathrm{I}\right)}{6}$
$+\frac{\mathrm{I} x^{3} \ln \left(2 \mathrm{Ie}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c\right)}{6}-\frac{\pi x^{3} \operatorname{csgn}\left(\frac{2 \mathrm{I} \mathrm{e}^{2 b x+2 a}+2 \mathrm{e}^{2 b x+2 a} c}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2}}{12}+\frac{\mathrm{I} x^{2} \operatorname{poly} \log \left(2, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{4 b}+\frac{\mathrm{I} \operatorname{polylog}\left(4, \mathrm{I} c \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}}$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \arctan \left(\mathrm{e}^{b x+a}\right) \mathrm{d} x
$$

Optimal(type 4, 35 leaves, 4 steps):

$$
\frac{\mathrm{I} \text { polylog }\left(2,-\mathrm{Ie}^{b x+a}\right)}{2 b}-\frac{\mathrm{I} \text { polylog}\left(2, \mathrm{Ie}^{b x+a}\right)}{2 b}
$$

Result(type 4, 105 leaves) :

$$
\frac{\ln \left(\mathrm{e}^{b x+a}\right) \arctan \left(\mathrm{e}^{b x+a}\right)}{b}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}\right) \ln \left(1+\mathrm{Ie}^{b x+a}\right)}{2 b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}\right) \ln \left(1-\mathrm{I} \mathrm{e}^{b x+a}\right)}{2 b}+\frac{\mathrm{I} \operatorname{dilog}\left(1+\mathrm{Ie}^{b x+a}\right)}{2 b}-\frac{\mathrm{Idilog}\left(1-\mathrm{I} \mathrm{e}^{b x+a}\right)}{2 b}
$$

Problem 32: Result more than twice size of optimal antiderivative.
$\int x \arctan \left(a+b f^{d x+c}\right) \mathrm{d} x$
Optimal(type 4, 200 leaves, 9 steps):
$\frac{x^{2} \arctan \left(a+b f^{d x+c}\right)}{2}-\frac{\mathrm{I} x^{2} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{4}+\frac{\mathrm{I} x^{2} \ln \left(1+\frac{\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{4}-\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d \ln (f)}+\frac{\mathrm{I} x \operatorname{polylog}\left(2, \frac{-\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{2 d \ln (f)}$

$$
+\frac{\mathrm{I} \text { polylog }\left(3, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d^{2} \ln (f)^{2}}-\frac{\mathrm{I} \text { polylog }\left(3, \frac{-\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{2 d^{2} \ln (f)^{2}}
$$

Result(type 4, 651 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) c}{2 d^{2} \ln (f)}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c^{2}}{4 d^{2}}-\frac{\mathrm{I} x^{2} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{4}-\frac{\mathrm{I} c^{2} \ln \left(1-\mathrm{I} a-\mathrm{I} b f^{d x+c}\right)}{4 d^{2}}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) x c}{2 d} \\
& +\frac{\mathrm{I} c \operatorname{dilog}\left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right)}{2 d^{2} \ln (f)}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) c^{2}}{4 d^{2}}+\frac{\mathrm{I} x^{2} \ln \left(1-\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{4}+\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d^{2} \ln (f)^{2}}+\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c}{2 d^{2} \ln (f)} \\
& -\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{2}}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x^{2}}{4}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x c}{2 d}-\frac{\mathrm{I} c \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right) x}{2 d}-\frac{\mathrm{I} c \operatorname{dilog}\left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{2} \ln (f)} \\
& -\frac{\mathrm{I} x^{2} \ln \left(1+\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{4}+\frac{\mathrm{I} c^{2} \ln \left(1+\mathrm{I} a+\mathrm{I} b f^{d x+c}\right)}{4 d^{2}}+\frac{\mathrm{I} c \ln \left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right) x}{2 d}+\frac{\mathrm{Ipolylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x}{2 d \ln (f)}-\frac{\mathrm{I} x \operatorname{poly} \log \left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d \ln (f)} \\
& -\frac{\mathrm{I} \text { poly } \log \left(3, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right)}{2 d^{2} \ln (f)^{2}}+\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right)}{2 d^{2}}
\end{aligned}
$$

Problem 33: Result more than twice size of optimal antiderivative.
$\int x^{2} \arctan \left(a+b f^{d x+c}\right) \mathrm{d} x$
Optimal(type 4, 268 leaves, 11 steps):
$\frac{x^{3} \arctan \left(a+b f^{d x+c}\right)}{3}-\frac{\mathrm{I} x^{3} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{6}+\frac{\mathrm{I} x^{3} \ln \left(1+\frac{\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{6}-\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d \ln (f)}+\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2, \frac{-\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{2 d \ln (f)}$

$$
+\frac{\mathrm{I} x \text { polylog }\left(3, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{d^{2} \ln (f)^{2}}-\frac{\mathrm{I} x \text { polylog }\left(3, \frac{-\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{d^{2} \ln (f)^{2}}-\frac{\mathrm{I} \text { polylog }\left(4, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{d^{3} \ln (f)^{3}}+\frac{\mathrm{I} \text { polylog }\left(4, \frac{-\mathrm{I} b f^{d x+c}}{1+\mathrm{I} a}\right)}{d^{3} \ln (f)^{3}}
$$

Result(type 4, 735 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} c^{3} \ln \left(1+\mathrm{I} a+\mathrm{I} b f^{d x+c}\right)}{6 d^{3}}-\frac{\mathrm{I} c^{2} \operatorname{dilog}\left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right)}{2 d^{3} \ln (f)}+\frac{\mathrm{I} x^{3} \ln \left(1-\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{6}-\frac{\mathrm{I} p o \operatorname{lylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c^{2}}{2 d^{3} \ln (f)}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) c^{3}}{3 d^{3}} \\
& +\frac{\mathrm{I} x \text { polylog }\left(3, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{d^{2} \ln (f)^{2}}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) c^{3}}{3 d^{3}}+\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right) x}{2 d^{2}}+\frac{\mathrm{I} \text { polylog}\left(2, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x^{2}}{2 d \ln (f)}-\frac{\mathrm{I} p o l y \log \left(4, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{d^{3} \ln (f)^{3}} \\
& +\frac{\mathrm{I} c^{3} \ln \left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{3}}-\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x c^{2}}{2 d^{2}}-\frac{\mathrm{I} x^{2} \operatorname{poly} \log \left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{2 d \ln (f)}+\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x^{3}}{6}+\frac{\mathrm{I} c^{3} \ln \left(1-\mathrm{I} a-\mathrm{I} b f^{d x+c}\right)}{6 d^{3}} \\
& -\frac{\mathrm{I} x^{3} \ln \left(1+\mathrm{I}\left(a+b f^{d x+c}\right)\right)}{6}+\frac{\mathrm{I} c^{2} \operatorname{dilog}\left(\frac{b f^{d x+c}+a-\mathrm{I}}{-\mathrm{I}+a}\right)}{2 d^{3} \ln (f)}-\frac{\mathrm{I} \operatorname{polylog}\left(3, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right) x}{d^{2} \ln (f)^{2}}+\frac{\mathrm{I} \operatorname{poly} \log \left(4, \frac{\mathrm{I} b f^{d x+c}}{-\mathrm{I} a-1}\right)}{d^{3} \ln (f)^{3}}-\frac{\mathrm{I} c^{2} \ln \left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right) x}{2 d^{2}} \\
& +\frac{\mathrm{I} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) x c^{2}}{2 d^{2}}-\frac{\mathrm{I} x^{3} \ln \left(1-\frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right)}{6}-\frac{\mathrm{I} c^{3} \ln \left(\frac{b f^{d x+c}+\mathrm{I}+a}{\mathrm{I}+a}\right)}{2 d^{3}}+\frac{\mathrm{I} \text { polylog }\left(2, \frac{\mathrm{I} b f^{d x+c}}{1-\mathrm{I} a}\right) c^{2}}{2 d^{3} \ln (f)}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int-\frac{\arctan (\sqrt{x}-\sqrt{x+1})}{x^{2}} d x
$$

Optimal(type 3, 27 leaves, 6 steps):

$$
-\frac{\pi}{4 x}+\frac{\arctan (\sqrt{x})}{2}+\frac{\arctan (\sqrt{x})}{2 x}+\frac{1}{2 \sqrt{x}}
$$

Result(type 3, 56 leaves):

$$
\frac{\arctan (\sqrt{x}-\sqrt{x+1})}{x}+\frac{1}{2 \sqrt{x}}+\frac{\operatorname{arctanh}(\sqrt{x+1})}{2}+\frac{\arctan (\sqrt{x})}{2}-\frac{\ln (\sqrt{x+1}+1)}{4}+\frac{\ln (\sqrt{x+1}-1)}{4}
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{\arctan \left(\frac{e x}{\sqrt{-\frac{a e^{2}}{b}-e^{2} x^{2}}}\right)}{\sqrt{b x^{2}+a}} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{e x}{\sqrt{-\frac{a e^{2}}{b}-e^{2} x^{2}}}\right)^{2} \sqrt{-\frac{a e^{2}}{b}-e^{2} x^{2}}}{2 e \sqrt{b x^{2}+a}}
$$

Result(type 8, 36 leaves):

$$
\int \frac{\arctan \left(\frac{e x}{\sqrt{-\frac{a e^{2}}{b}-e^{2} x^{2}}}\right)}{\sqrt{b x^{2}+a}} \mathrm{~d} x
$$

Problem 42: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \arctan (\sinh (b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 46 leaves, 5 steps):

$$
\frac{\mathrm{e}^{b c x+a c} \arctan (\sinh (c(b x+a)))}{c b}-\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}\right)}{c b}
$$

Result(type 3, 1298 leaves):

$$
\begin{aligned}
\frac{2 a}{b} & -\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}\right)}{c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{2 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{2 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)}{c b}+\frac{\mathrm{e}^{c(b x+a)} \pi}{2 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)}{c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b}
\end{aligned}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \arctan (\cosh (b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 88 leaves, 8 steps):

$$
\frac{\mathrm{e}^{b c x+a c} \arctan (\cosh (c(b x+a)))}{c b}-\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}-2 \sqrt{2}\right)(1-\sqrt{2})}{2 c b}-\frac{\ln \left(3+\mathrm{e}^{2 c(b x+a)}+2 \sqrt{2}\right)(1+\sqrt{2})}{2 c b}
$$

Result(type 3, 1350 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)}{2 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& \quad+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& \quad+\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& \quad+\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\right) \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I} \mathrm{e}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{Ie}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1-2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b} \\
& +\frac{\pi \operatorname{csgn}\left(\mathrm{I}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right) \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{I}^{c(b x+a)}\right)\right) \mathrm{e}^{c(b x+a)}}{4 c b} \\
& -\frac{\pi \operatorname{csgn}\left(\mathrm{e}^{-c(b x+a)}\left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}^{c(b x+a)}\right)\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right) \sqrt{2}}{2 c b}+\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right) \sqrt{2}}{2 c b} \\
& +\frac{\mathrm{e}^{c(b x+a)} \pi}{2 c b}+\frac{2 a}{b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(1+\sqrt{2})^{2}\right)}{2 c b}-\frac{\ln \left(\mathrm{e}^{2 c(b x+a)}+(\sqrt{2}-1)^{2}\right)}{2 c b}+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{2 c(b x+a)}+1+2 \mathrm{Ie}{ }^{c(b x+a)}\right)}{2 c b}
\end{aligned}
$$

Problem 44: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{c(b x+a)} \arctan (\operatorname{csch}(b c x+a c)) \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 5 steps):

$$
\frac{\mathrm{e}^{b c x+a c} \arctan (\operatorname{csch}(c(b x+a)))}{c b}+\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}\right)}{c b}
$$

Result(type 3, 884 leaves):

$$
-\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)}{c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{2 c b}
$$

$-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}$ $-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}$
$+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{2} \mathrm{e}^{c(b x+a)}}{2 c b}$
$+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}+\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \mathrm{e}^{c(b x+a)}}{4 c b}$
$-\frac{\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}$
$+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}+\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 c(b x+a)}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{2} \mathrm{e}^{c(b x+a)}}{4 c b}$
$+\frac{\pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)^{2}}{\mathrm{e}^{2 c(b x+a)}-1}\right)^{3} \mathrm{e}^{c(b x+a)}}{4 c b}-\frac{2 a}{b}+\frac{\ln \left(1+\mathrm{e}^{2 c(b x+a)}\right)}{c b}+\frac{\mathrm{I} \mathrm{e}^{c(b x+a)} \ln \left(\mathrm{e}^{c(b x+a)}-\mathrm{I}\right)}{c b}$

Summary of Integration Test Results

572 integration problems

A - 362 optimal antiderivatives
B - 105 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 105 unable to integrate problems
E - O integration timeouts

[^0]: Problem 16: Result more than twice size of optimal antiderivative.

[^1]: Problem 54: Result more than twice size of optimal antiderivative.

[^2]: Problem 307: Unable to integrate problem.

[^3]: Problem 330: Result more than twice size of optimal antiderivative.

[^4]: Problem 41: Unable to integrate problem.

